Some Smoothing Properties of the Star Product of Copulas

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 190)


Three indications for the fact that the star product of copulas is smoothing are given. Firstly, it is shown that for every absolutely continuous copula A and every copula B both A*B and B*A are absolutely continuous. Secondly, an example of a singular copula A such that the absolutely continuous component of A*A has support [0,1]2 and mass at least 1/4 is given. Finally, it is shown that for every copula B of the form B = (1 − α)A + αS, whereby A is an absolutely continuous copula, S is a singular copula and α ∈ [0,1), there exists an absolutely continuous idempotent copula \(\widehat{B}\) such that \(\widehat{B}\) is the Cesáro limit of the sequence (B*n)n ∈ ℕ of iterates of the star product of B with respect to the metric D1 introduced in [15].


Copula star product 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Darsow, W.F., Nguyen, B., Olsen, E.T.: Copulas and Markov processes. Illinois J. Math. 36(4), 600–642 (1992)MathSciNetMATHGoogle Scholar
  2. 2.
    Darsow, W.F., Olsen, E.T.: Characterization of idempotent 2-copulas. Note Math. 30(1), 147–177 (2010)Google Scholar
  3. 3.
    de Amo, E., Díaz Carrillo, M., Fernández-Sánchez, J.: Measure-preserving functions and the independence copula. Mediterr. J. Math. 8(3), 431–450 (2011)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Durante, F., Klement, E.P., Quesada-Molina, J., Sarkoci, J.: Remarks on two product-like constructions for copulas. Kybernetika 43(2), 235–244 (2007)MathSciNetMATHGoogle Scholar
  5. 5.
    Durante, F., Sempi, C.: Copula theory: an introduction. In: Jaworski, P., Durante, F., Härdle, W., Rychlik, T. (eds.) Copula theory and Its Applications. Lecture Notes in Statistics, vol. 198, pp. 1–31. Springer, Berlin (2010)CrossRefGoogle Scholar
  6. 6.
    Kallenberg, O.: Foundations of Modern Probability. Springer, Berlin (1997)MATHGoogle Scholar
  7. 7.
    Klenke, A.: Probability Theory – A Comprehensive Course. Springer, Berlin (2007)Google Scholar
  8. 8.
    Kolesárová, A., Mesiar, R., Sempi, C.: Measure-preserving transformations, copulae and compatibility. Mediterr. J. Math. 5, 325–339 (2008)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Nelsen, R.B.: An Introduction to Copulas. Springer, New York (2006)MATHGoogle Scholar
  10. 10.
    Olsen, E.T., Darsow, W.F., Nguyen, B.: Copulas and Markov operators. In: Proc. of the Conf. on Distributions with Fixed Marginals and Related Topics. IMS Lecture Notes, Monograph Series, vol. 28, pp. 244–259 (1996)Google Scholar
  11. 11.
    Parry, W.: Topics in Ergodic Theory. Cambridge University Press (1981)Google Scholar
  12. 12.
    Scheffé, H.: A useful convergence theorem for probability distributions. Ann. Math. Statist. 18, 434–438 (1947)MATHCrossRefGoogle Scholar
  13. 13.
    Sempi, C.: Conditional expectations and idempotent copulae. In: Cuadras, C.M., et al. (eds.) Distributions with Given Marginals and Statistical Modelling, pp. 223–228. Kluwer, Netherlands (2002)Google Scholar
  14. 14.
    Sempi, C.: Copulae: Some mathematical aspects. Appl. Stoch. Model. Bus 27, 37–50 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Trutschnig, W.: On a strong metric on the space of copulas and its induced dependence measure. J. Math. Anal. Appl. 384, 690–705 (2011)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Trutschnig, W.: A note on Cesáro convergence of iterates of the star product and a short proof that idempotent copulas are symmetric (submitted)Google Scholar
  17. 17.
    Trutschnig, W., Fernández Sánchez, J.: Idempotent and multivariate copulas with fractal support (submitted)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Research Unit for Intelligent Data AnalysisEuropean Centre for Soft ComputingMieresSpain

Personalised recommendations