Advertisement

Comparing Classical and Robust Sparse PCA

  • Valentin TodorovEmail author
  • Peter Filzmoser
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 190)

Abstract

The main drawback of principal component analysis (PCA) especially for applications in high dimensions is that the extracted components are linear combinations of all input variables. To facilitate the interpretability of PCA various sparse methods have been proposed recently. However all these methods might suffer from the influence of outliers present in the data. An algorithm to compute sparse and robust PCA was recently proposed by Croux et al. We compare this method to standard (non-sparse) classical and robust PCA and several other sparse methods. The considered methods are illustrated on a real data example and compared in a simulation experiment. It is shown that the robust sparse method preserves the sparsity and at the same time provides protection against contamination.

Keywords

Principcal component analysis robust statistics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Croux, C., Filzmoser, P., Fritz, H.: Robust sparse principal component analysis. Reserach report sm-2011-2, Vienna University of Technology (2011)Google Scholar
  2. 2.
    Croux, C., Filzmoser, P., Oliveira, M.: Algorithms for projection-pursuit robust principal component analysis. Chemometr. Intel. Lab. 87, 218–225 (2007)CrossRefGoogle Scholar
  3. 3.
    Croux, C., Ruiz-Gazen, A.: High breakdown estimators for principal components: The projection-pursuit approach revisited. J. Multivariate Anal. 95, 206–226 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Hettich, S., Bay, S.D.: The UCI KDD archive (1999), http://kdd.ics.uci.edu
  5. 5.
    Hubert, M., Rousseeuw, P., Vanden Branden, K.: ROBPCA: A new approach to robust principal component analysis. Technometrics 47, 64–79 (2005)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Jolliffe, I.T., Trendafilov, N.T., Uddin, M.: A modified principal component technique based on the LASSO. J. Comput. Graph. Stat. 12, 531–547 (2003)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Krzanowski, W.J., Marriott, F.H.C.: Multivariate Analysis, Part 2: Classification, Covariance Structure and Repeated Measurements. Arnold, London (1995)zbMATHGoogle Scholar
  8. 8.
    Maronna, R.A., Martin, D., Yohai, V.: Robust Statistics: Theory and Methods. Wiley, New York (2006)zbMATHCrossRefGoogle Scholar
  9. 9.
    Meng, D., Zhao, Q., Xu, Z.: Improve robustness of sparse PCA by L1-norm maximization. Pattern Recogn. 45(1), 487–497 (2012)zbMATHCrossRefGoogle Scholar
  10. 10.
    Shen, H., Huang, J.Z.: Sparse principal component analysis via regularized low rank matrix approximation. J. Multivariate Anal. 99, 1015–1034 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Siebert, J.P.: Vehicle recognition using rule based methods. Turing Institute Research Memorandum TIRM-87-018 (1987)Google Scholar
  12. 12.
    Todorov, V., Filzmoser, P.: An object oriented framework for robust multivariate analysis. J. Stat. Softw. 32, 1–47 (2009)Google Scholar
  13. 13.
    Zou, H., Hastie, T., Tibshirani, R.: Sparse principal component analysis. J. Comput. Graph. Stat. 15, 265–286 (2006)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.United Nations Industrial Development Organization (UNIDO)ViennaAustria
  2. 2.Department of Statistics and Probability TheoryVienna University of TechnologyViennaAustria

Personalised recommendations