Advertisement

Spinor Gravity and Diffeomorphism Invariance on the Lattice

  • C. Wetterich
Part of the Lecture Notes in Physics book series (LNP, volume 863)

Abstract

The key ingredient for lattice regularized quantum gravity is diffeomorphism symmetry. We formulate a lattice functional integral for quantum gravity in terms of fermions. This allows for a diffeomorphism invariant functional measure and avoids problems of boundedness of the action. We discuss the concept of lattice diffeomorphism invariance. This is realized if the action does not depend on the positioning of abstract lattice points on a continuous manifold. Our formulation of lattice spinor gravity also realizes local Lorentz symmetry. Furthermore, the Lorentz transformations are generalized such that the functional integral describes simultaneously euclidean and Minkowski signature. The difference between space and time arises as a dynamical effect due to the expectation value of a collective metric field. The quantum effective action for the metric is diffeomorphism invariant. Realistic gravity can be obtained if this effective action admits a derivative expansion for long wavelengths.

Keywords

Gauge Transformation Continuum Limit Lorentz Transformation Lattice Action Derivative Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    C. Wetterich, Phys. Lett. B 704, 612 (2011) ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    C. Wetterich, arXiv:1110.1539
  3. 3.
    D. Diakonov, arXiv:1109.0091 [hep-th]
  4. 4.
    H.W. Hamber, arXiv:0901.0964 [gr-qc]
  5. 5.
    J. Ambjorn, J. Jurkiewicz, R. Loll, arXiv:1105.5582 [hep-lat]
  6. 6.
    C. Rovelli, arXiv:1102.3660 [gr-qc]
  7. 7.
    A. Hebecker, C. Wetterich, Phys. Lett. B 57, 269 (2003) ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    C. Wetterich, Phys. Rev. D 70, 105004 (2004) ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    C. Wetterich, Phys. Rev. Lett. 94, 011602 (2005) ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    K. Akama, Y. Chikashige, T. Matsuki, H. Terazawa, Prog. Theor. Phys. 60, 868 (1978) ADSCrossRefGoogle Scholar
  11. 11.
    K. Akama, Prog. Theor. Phys. 60, 1900 (1978) ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    D. Amati, G. Veneziano, Phys. Lett. B 105, 358 (1981) ADSCrossRefGoogle Scholar
  13. 13.
    G. Denardo, E. Spallucci, Class. Quantum Gravity, 89 (1987) Google Scholar
  14. 14.
    Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345 (1961) ADSCrossRefGoogle Scholar
  15. 15.
    C. Wetterich, Nucl. Phys. B 211, 177 (1983) ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    C. Wetterich, Nucl. Phys. B 852, 174 (2011) ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    C. Itzykson, Fields on a random lattice, in Progess in Gauge Field Theory, Cargèse (1983) Google Scholar
  18. 18.
    T.D. Lee, in Discrete Mechanics, 1983. Erice School of Subnuclear Physics, vol. 21 (Plenum Press, New York, 1985) Google Scholar
  19. 19.
    J.B. Hartle, J. Math. Phys. 26, 804 (1985) ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    H.W. Hamber, R.M. Williams, Nucl. Phys. B 435, 361 (1995) ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    C. Wetterich, Nucl. Phys. B 397, 299 (1993) ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    C. Wetterich, Nucl. Phys. B 302, 645 (1988) ADSCrossRefGoogle Scholar
  23. 23.
    C. Wetterich, Nucl. Phys. B 302, 668 (1988) ADSCrossRefGoogle Scholar
  24. 24.
    Y. Fujii, Phys. Rev. D 26, 2580 (1982) ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    S. Weinberg, in General Relativity: An Einstein Centenary Survey, ed. by S.W. Hawking, W. Israel (Cambridge University Press, Cambridge, 1979), p. 790 Google Scholar
  26. 26.
    M. Reuter, Phys. Rev. D 57, 971 (1998) ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    A. Codello, R. Percacci, C. Rahmede, Ann. Phys. 324, 414 (2009) ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    C. Wetterich, Phys. Lett. B 301, 90 (1993) ADSCrossRefGoogle Scholar
  29. 29.
    M. Reuter, C. Wetterich, Nucl. Phys. B 417, 181 (1994) ADSCrossRefGoogle Scholar
  30. 30.
    E. Cartan, Ann. Sci. Ec. Norm. Super. 40, 325 (1923) MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikUniversität HeidelbergHeidelbergGermany

Personalised recommendations