Unconventional Cosmology

Part of the Lecture Notes in Physics book series (LNP, volume 863)

Abstract

I review two cosmological paradigms which are alternative to the current inflationary scenario. The first alternative is the “matter bounce”, a non-singular bouncing cosmology with a matter-dominated phase of contraction. The second is an “emergent” scenario, which can be implemented in the context of “string gas cosmology”. I will compare these scenarios with the inflationary one and demonstrate that all three lead to an approximately scale-invariant spectrum of cosmological perturbations.

References

  1. 1.
    A.H. Guth, The inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347 (1981) ADSGoogle Scholar
  2. 2.
    R. Brout, F. Englert, E. Gunzig, The creation of the universe as a quantum phenomenon. Ann. Phys. 115, 78 (1978) ADSCrossRefGoogle Scholar
  3. 3.
    A.A. Starobinsky, A new type of isotropic cosmological models without singularity. Phys. Lett. B 91, 99 (1980) ADSCrossRefGoogle Scholar
  4. 4.
    K. Sato, First order phase transition of a vacuum and expansion of the universe. Mon. Not. R. Astron. Soc. 195, 467 (1981) ADSCrossRefGoogle Scholar
  5. 5.
    V. Mukhanov, G. Chibisov, Quantum fluctuation and nonsingular universe. JETP Lett. 33, 532 (1981) (In Russian) [Pisma Zh. Eksp. Teor. Fiz. 33, 549 (1981)] ADSGoogle Scholar
  6. 6.
    W. Press, Spontaneous production of the Zel’dovich spectrum of cosmological fluctuations. Phys. Scr. 21, 702 (1980) ADSCrossRefGoogle Scholar
  7. 7.
    A.A. Starobinsky, Spectrum of relict gravitational radiation and the early state of the universe. JETP Lett. 30, 682 (1979) [Pisma Zh. Eksp. Teor. Fiz. 30 719 (1979)] ADSGoogle Scholar
  8. 8.
    Y.B. Zeldovich, A hypothesis, unifying the structure and the entropy of the universe. Mon. Not. R. Astron. Soc. 160, 1P (1972) ADSCrossRefGoogle Scholar
  9. 9.
    E.R. Harrison, Fluctuations at the threshold of classical cosmology. Phys. Rev. D 1, 2726 (1970) ADSGoogle Scholar
  10. 10.
    R.A. Sunyaev, Y.B. Zeldovich, Small scale fluctuations of relic radiation. Astrophys. Space Sci. 7, 3–19 (1970) ADSGoogle Scholar
  11. 11.
    P.J.E. Peebles, J.T. Yu, Primeval adiabatic perturbation in an expanding universe. Astrophys. J. 162, 815–836 (1970) ADSCrossRefGoogle Scholar
  12. 12.
    C.L. Bennett et al., First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: preliminary maps and basic results. Astrophys. J. Suppl. 148, 1 (2003). arXiv:astro-ph/0302207 ADSCrossRefGoogle Scholar
  13. 13.
    R.H. Brandenberger, C. Vafa, Superstrings in the early universe. Nucl. Phys. B 316, 391 (1989) ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    A. Nayeri, R.H. Brandenberger, C. Vafa, Producing a scale-invariant spectrum of perturbations in a Hagedorn phase of string cosmology. Phys. Rev. Lett. 97, 021302 (2006). arXiv:hep-th/0511140 ADSCrossRefGoogle Scholar
  15. 15.
    R.H. Brandenberger, String gas cosmology, in String Cosmology, ed. by J. Erdmenger (Wiley, New York, 2009). arXiv:0808.0746 [hep-th] Google Scholar
  16. 16.
    T. Battefeld, S. Watson, String gas cosmology. Rev. Mod. Phys. 78, 435 (2006). arXiv:hep-th/0510022 ADSMathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    R.H. Brandenberger, String gas cosmology: progress and problems. Class. Quantum Gravity 28, 204005 (2011). arXiv:1105.3247 [hep-th] ADSMathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    G.F.R. Ellis, R. Maartens, The emergent universe: inflationary cosmology with no singularity. Class. Quantum Gravity 21, 223 (2004). gr-qc/0211082 ADSMathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    D. Wands, Duality invariance of cosmological perturbation spectra. Phys. Rev. D 60, 023507 (1999). arXiv:gr-qc/9809062 ADSGoogle Scholar
  20. 20.
    F. Finelli, R. Brandenberger, On the generation of a scale-invariant spectrum of adiabatic fluctuations in cosmological models with a contracting phase. Phys. Rev. D 65, 103522 (2002). arXiv:hep-th/0112249 ADSGoogle Scholar
  21. 21.
    R.H. Brandenberger, Cosmology of the very early universe. AIP Conf. Proc. 1268, 3–70 (2010). arXiv:1003.1745 [hep-th] ADSCrossRefGoogle Scholar
  22. 22.
    M. Gasperini, G. Veneziano, Pre-big bang in string cosmology. Astropart. Phys. 1, 317 (1993). arXiv:hep-th/9211021 ADSCrossRefGoogle Scholar
  23. 23.
    J. Khoury, B.A. Ovrut, P.J. Steinhardt, N. Turok, The ekpyrotic universe: colliding branes and the origin of the hot big bang. Phys. Rev. D 64, 123522 (2001). arXiv:hep-th/0103239 ADSMathSciNetGoogle Scholar
  24. 24.
    V.A. Rubakov, Harrison-Zeldovich spectrum from conformal invariance. J. Cosmol. Astropart. Phys. 0909, 030 (2009). arXiv:0906.3693 [hep-th] ADSCrossRefGoogle Scholar
  25. 25.
    K. Hinterbichler, J. Khoury, The pseudo-conformal universe: scale invariance from spontaneous breaking of conformal symmetry. arXiv:1106.1428 [hep-th]
  26. 26.
    F.L. Bezrukov, M. Shaposhnikov, The standard model Higgs boson as the inflaton. Phys. Lett. B 659, 703 (2008). arXiv:0710.3755 [hep-th] ADSCrossRefGoogle Scholar
  27. 27.
    F.C. Adams, K. Freese, A.H. Guth, Constraints on the scalar field potential in inflationary models. Phys. Rev. D 43, 965 (1991) ADSCrossRefGoogle Scholar
  28. 28.
    R.H. Brandenberger, Inflationary cosmology: progress and problems. arXiv:hep-ph/9910410
  29. 29.
    R.H. Brandenberger, J. Martin, The robustness of inflation to changes in superPlanck scale physics. Mod. Phys. Lett. A 16, 999 (2001). arXiv:astro-ph/0005432 ADSMATHCrossRefGoogle Scholar
  30. 30.
    J. Martin, R.H. Brandenberger, The transPlanckian problem of inflationary cosmology. Phys. Rev. D 63, 123501 (2001). arXiv:hep-th/0005209 ADSGoogle Scholar
  31. 31.
    J.C. Niemeyer, Inflation with a high frequency cutoff. Phys. Rev. D 63, 123502 (2001). arXiv:astro-ph/0005533 ADSGoogle Scholar
  32. 32.
    J.C. Niemeyer, R. Parentani, Minimal modifications of the primordial power spectrum from an adiabatic short distance cutoff. Phys. Rev. D 64, 101301 (2001). arXiv:astro-ph/0101451 ADSGoogle Scholar
  33. 33.
    S. Shankaranarayanan, Is there an imprint of Planck scale physics on inflationary cosmology? Class. Quantum Gravity 20, 75 (2003). arXiv:gr-qc/0203060 ADSMathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space-Time (Cambridge University Press, Cambridge, 1973) MATHCrossRefGoogle Scholar
  35. 35.
    A. Borde, A. Vilenkin, Eternal inflation and the initial singularity. Phys. Rev. Lett. 72, 3305 (1994). arXiv:gr-qc/9312022 ADSCrossRefGoogle Scholar
  36. 36.
    C. Kounnas, H. Partouche, N. Toumbas, Thermal duality and non-singular cosmology in d-dimensional superstrings. Nucl. Phys. B 855, 280 (2012). arXiv:1106.0946 [hep-th] ADSMathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    C. Kounnas, H. Partouche, N. Toumbas, S-brane to thermal non-singular string cosmology. arXiv:1111.5816 [hep-th]
  38. 38.
    R. Brandenberger, C. Kounnas, H. Partouche, S. Patil, N. Toumbas, Fluctuations in non-singular bouncing cosmologies from Type II superstrings, to be submitted Google Scholar
  39. 39.
    M. Novello, S.E.P. Bergliaffa, Bouncing cosmologies. Phys. Rep. 463, 127 (2008). arXiv:0802.1634 [astro-ph] ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    B. Feng, X.L. Wang, X.M. Zhang, Dark energy constraints from the cosmic age and supernova. Phys. Lett. B 607, 35 (2005). arXiv:astro-ph/0404224 ADSCrossRefGoogle Scholar
  41. 41.
    B. Feng, M. Li, Y.S. Piao, X. Zhang, Oscillating quintom and the recurrent universe. Phys. Lett. B 634, 101 (2006). arXiv:astro-ph/0407432 ADSCrossRefGoogle Scholar
  42. 42.
    Y.F. Cai, T. Qiu, Y.S. Piao, M. Li, X. Zhang, Bouncing universe with quintom matter. J. High Energy Phys. 0710, 071 (2007). arXiv:0704.1090 [gr-qc] ADSCrossRefGoogle Scholar
  43. 43.
    Y.F. Cai, T.T. Qiu, J.Q. Xia, X. Zhang, A model of inflationary cosmology without singularity. Phys. Rev. D 79, 021303 (2009). arXiv:0808.0819 [astro-ph] ADSCrossRefGoogle Scholar
  44. 44.
    Y.F. Cai, T. Qiu, R. Brandenberger, Y.S. Piao, X. Zhang, On perturbations of quintom bounce. J. Cosmol. Astropart. Phys. 0803, 013 (2008). arXiv:0711.2187 [hep-th] ADSCrossRefGoogle Scholar
  45. 45.
    Y.F. Cai, X. Zhang, Evolution of metric perturbations in quintom bounce model. J. Cosmol. Astropart. Phys. 0906, 003 (2009). arXiv:0808.2551 [astro-ph] ADSCrossRefGoogle Scholar
  46. 46.
    J.M. Cline, S. Jeon, G.D. Moore, The phantom menaced: constraints on low-energy effective ghosts. Phys. Rev. D 70, 043543 (2004). arXiv:hep-ph/0311312 ADSGoogle Scholar
  47. 47.
    B. Grinstein, D. O’Connell, M.B. Wise, The Lee-Wick standard model. Phys. Rev. D 77, 025012 (2008). arXiv:0704.1845 [hep-ph] ADSGoogle Scholar
  48. 48.
    Y.F. Cai, T. Qiu, R. Brandenberger, X. Zhang, A nonsingular cosmology with a scale-invariant spectrum of cosmological perturbations from Lee-Wick theory. Phys. Rev. D 80, 023511 (2009). arXiv:0810.4677 [hep-th] ADSGoogle Scholar
  49. 49.
    J. Karouby, R. Brandenberger, A radiation bounce from the Lee-Wick construction? Phys. Rev. D 82, 063532 (2010). arXiv:1004.4947 [hep-th] ADSGoogle Scholar
  50. 50.
    J. Karouby, T. Qiu, R. Brandenberger, On the instability of the Lee-Wick bounce. Phys. Rev. D 84, 043505 (2011). arXiv:1104.3193 [hep-th] ADSGoogle Scholar
  51. 51.
    V.A. Belinsky, I.M. Khalatnikov, E.M. Lifshitz, Oscillatory approach to a singular point in the relativistic cosmology. Adv. Phys. 19, 525 (1970) ADSCrossRefGoogle Scholar
  52. 52.
    C. Lin, R.H. Brandenberger, L.P. Levasseur, A matter bounce by means of Ghost condensation. J. Cosmol. Astropart. Phys. 1104, 019 (2011). arXiv:1007.2654 [hep-th] ADSCrossRefGoogle Scholar
  53. 53.
    P. Creminelli, L. Senatore, A smooth bouncing cosmology with scale invariant spectrum. J. Cosmol. Astropart. Phys. 0711, 010 (2007). arXiv:hep-th/0702165 ADSCrossRefGoogle Scholar
  54. 54.
    E.I. Buchbinder, J. Khoury, B.A. Ovrut, New ekpyrotic cosmology. Phys. Rev. D 76, 123503 (2007). arXiv:hep-th/0702154 ADSMathSciNetMATHGoogle Scholar
  55. 55.
    T. Qiu, J. Evslin, Y.F. Cai, M. Li, X. Zhang, Bouncing Galileon cosmologies. J. Cosmol. Astropart. Phys. 1110, 036 (2011). arXiv:1108.0593 [hep-th] ADSCrossRefGoogle Scholar
  56. 56.
    D.A. Easson, I. Sawicki, A. Vikman, G-bounce. J. Cosmol. Astropart. Phys. 1111, 021 (2011). arXiv:1109.1047 [hep-th] ADSCrossRefGoogle Scholar
  57. 57.
    J.K. Erickson, D.H. Wesley, P.J. Steinhardt, N. Turok, Kasner and mixmaster behavior in universes with equation of state w≥1. Phys. Rev. D 69, 063514 (2004). arXiv:hep-th/0312009 ADSMathSciNetGoogle Scholar
  58. 58.
    Y. Cai, D. Easson, R. Brandenberger, Towards a nonsingular bouncing cosmology. J. Cosmol. Astropart. Phys. 1208, 020 (2012). arXiv:1206.2382 ADSCrossRefGoogle Scholar
  59. 59.
    R.H. Brandenberger, V.F. Mukhanov, A. Sornborger, A cosmological theory without singularities. Phys. Rev. D 48, 1629 (1993). arXiv:gr-qc/9303001 ADSMathSciNetGoogle Scholar
  60. 60.
    T. Biswas, A. Mazumdar, W. Siegel, Bouncing universes in string-inspired gravity. J. Cosmol. Astropart. Phys. 0603, 009 (2006). arXiv:hep-th/0508194 ADSMathSciNetMATHCrossRefGoogle Scholar
  61. 61.
    A. Kehagias, E. Kiritsis, Mirage cosmology. J. High Energy Phys. 9911, 022 (1999). arXiv:hep-th/9910174 ADSMathSciNetMATHCrossRefGoogle Scholar
  62. 62.
    R. Brandenberger, H. Firouzjahi, O. Saremi, Cosmological perturbations on a bouncing brane. J. Cosmol. Astropart. Phys. 0711, 028 (2007). arXiv:0707.4181 [hep-th] ADSCrossRefGoogle Scholar
  63. 63.
    P. Horava, Quantum gravity at a Lifshitz point. Phys. Rev. D 79, 084008 (2009). arXiv:0901.3775 [hep-th] ADSMathSciNetGoogle Scholar
  64. 64.
    R. Brandenberger, Matter bounce in Horava-Lifshitz cosmology. Phys. Rev. D 80, 043516 (2009). arXiv:0904.2835 [hep-th] ADSMathSciNetGoogle Scholar
  65. 65.
    M. Bojowald, Quantum cosmology. Lect. Notes Phys. 835, 1 (2011) MATHCrossRefGoogle Scholar
  66. 66.
    A. Ashtekar, P. Singh, Loop quantum cosmology: a status report. Class. Quantum Gravity 28, 213001 (2011). arXiv:1108.0893 [gr-qc] ADSMathSciNetMATHCrossRefGoogle Scholar
  67. 67.
    P. Creminelli, A. Nicolis, E. Trincherini, Galilean genesis: an alternative to inflation. J. Cosmol. Astropart. Phys. 1011, 021 (2010). arXiv:1007.0027 [hep-th] ADSCrossRefGoogle Scholar
  68. 68.
    L. Levasseur Perreault, R. Brandenberger, A.-C. Davis, Defrosting in an emergent Galileon cosmology. Phys. Rev. D 84, 103512 (2011). arXiv:1105.5649 [astro-ph.CO] ADSGoogle Scholar
  69. 69.
    J. Kripfganz, H. Perlt, Cosmological impact of winding strings. Class. Quantum Gravity 5, 453 (1988) ADSMathSciNetCrossRefGoogle Scholar
  70. 70.
    R. Hagedorn, Statistical thermodynamics of strong interactions at high-energies. Nuovo Cimento Suppl. 3, 147 (1965) Google Scholar
  71. 71.
    J. Polchinski, String Theory, vols. 1 and 2 (Cambridge Univ. Press, Cambridge, 1998) MATHCrossRefGoogle Scholar
  72. 72.
    T. Boehm, R. Brandenberger, On T-duality in brane gas cosmology. J. Cosmol. Astropart. Phys. 0306, 008 (2003). arXiv:hep-th/0208188 ADSMathSciNetMATHCrossRefGoogle Scholar
  73. 73.
    K. Hotta, K. Kikkawa, H. Kunitomo, Correlation between momentum modes and winding modes in Brandenberger-Vafa’s string cosmological model. Prog. Theor. Phys. 98, 687 (1997). arXiv:hep-th/9705099 ADSMathSciNetCrossRefGoogle Scholar
  74. 74.
    M.A.R. Osorio, M.A. Vazquez-Mozo, A cosmological interpretation of duality. Phys. Lett. B 320, 259 (1994). arXiv:hep-th/9311080 ADSCrossRefGoogle Scholar
  75. 75.
    A.A. Tseytlin, C. Vafa, Elements of string cosmology. Nucl. Phys. B 372, 443 (1992). arXiv:hep-th/9109048 ADSMathSciNetCrossRefGoogle Scholar
  76. 76.
    G. Veneziano, Scale factor duality for classical and quantum strings. Phys. Lett. B 265, 287 (1991) ADSMathSciNetCrossRefGoogle Scholar
  77. 77.
    A.A. Tseytlin, Dilaton, winding modes and cosmological solutions. Class. Quantum Gravity 9, 979 (1992). arXiv:hep-th/9112004 ADSMathSciNetCrossRefGoogle Scholar
  78. 78.
    R.H. Brandenberger, A.R. Frey, S. Kanno, Towards a nonsingular tachyonic big crunch. Phys. Rev. D 76, 063502 (2007). arXiv:0705.3265 [hep-th] ADSMathSciNetGoogle Scholar
  79. 79.
    S. Arapoglu, A. Karakci, A. Kaya, S-duality in string gas cosmology. Phys. Lett. B 645, 255 (2007). arXiv:hep-th/0611193 ADSMathSciNetMATHCrossRefGoogle Scholar
  80. 80.
    M. Sakellariadou, Numerical experiments in string cosmology. Nucl. Phys. B 468, 319 (1996). arXiv:hep-th/9511075 ADSCrossRefGoogle Scholar
  81. 81.
    G.B. Cleaver, P.J. Rosenthal, String cosmology and the dimension of space-time. Nucl. Phys. B 457, 621 (1995). arXiv:hep-th/9402088 ADSMathSciNetMATHCrossRefGoogle Scholar
  82. 82.
    R. Brandenberger, D.A. Easson, D. Kimberly, Loitering phase in brane gas cosmology. Nucl. Phys. B 623, 421 (2002). arXiv:hep-th/0109165 ADSMathSciNetMATHCrossRefGoogle Scholar
  83. 83.
    A. Vilenkin, E.P.S. Shellard, Cosmic Strings and Other Topological Defects (Cambridge Univ. Press, Cambridge, 1994) MATHGoogle Scholar
  84. 84.
    M.B. Hindmarsh, T.W.B. Kibble, Cosmic strings. Rep. Prog. Phys. 58, 477 (1995). arXiv:hep-ph/9411342 ADSMathSciNetCrossRefGoogle Scholar
  85. 85.
    R.H. Brandenberger, Topological defects and structure formation. Int. J. Mod. Phys. A 9, 2117 (1994). arXiv:astro-ph/9310041 ADSCrossRefGoogle Scholar
  86. 86.
    R. Easther, B.R. Greene, M.G. Jackson, D. Kabat, String windings in the early universe. J. Cosmol. Astropart. Phys. 0502, 009 (2005). arXiv:hep-th/0409121 ADSMathSciNetGoogle Scholar
  87. 87.
    R. Danos, A.R. Frey, A. Mazumdar, Interaction rates in string gas cosmology. Phys. Rev. D 70, 106010 (2004). arXiv:hep-th/0409162 ADSGoogle Scholar
  88. 88.
    B. Greene, D. Kabat, S. Marnerides, Dynamical decompactification and three large dimensions. Phys. Rev. D 82, 043528 (2010). arXiv:0908.0955 [hep-th] ADSGoogle Scholar
  89. 89.
    R.H. Brandenberger, Moduli stabilization in string gas cosmology. Prog. Theor. Phys. Suppl. 163, 358 (2006). arXiv:hep-th/0509159 ADSMathSciNetMATHCrossRefGoogle Scholar
  90. 90.
    S. Watson, R. Brandenberger, Stabilization of extra dimensions at tree level. J. Cosmol. Astropart. Phys. 0311, 008 (2003). arXiv:hep-th/0307044 ADSCrossRefGoogle Scholar
  91. 91.
    L. Kofman, A. Linde, X. Liu, A. Maloney, L. McAllister, E. Silverstein, Beauty is attractive: moduli trapping at enhanced symmetry points. J. High Energy Phys. 0405, 030 (2004). arXiv:hep-th/0403001 ADSMathSciNetCrossRefGoogle Scholar
  92. 92.
    S. Watson, Moduli stabilization with the string Higgs effect. Phys. Rev. D 70, 066005 (2004). arXiv:hep-th/0404177 ADSGoogle Scholar
  93. 93.
    S.P. Patil, R. Brandenberger, Radion stabilization by stringy effects in general relativity and dilaton gravity. Phys. Rev. D 71, 103522 (2005). arXiv:hep-th/0401037 ADSGoogle Scholar
  94. 94.
    S.P. Patil, R.H. Brandenberger, The cosmology of massless string modes. J. Cosmol. Astropart. Phys. 0601, 005 (2006). arXiv:hep-th/0502069 ADSCrossRefGoogle Scholar
  95. 95.
    R. Brandenberger, Y.K. Cheung, S. Watson, Moduli stabilization with string gases and fluxes. J. High Energy Phys. 0605, 025 (2006). arXiv:hep-th/0501032 MathSciNetGoogle Scholar
  96. 96.
    R.J. Danos, A.R. Frey, R.H. Brandenberger, Stabilizing moduli with thermal matter and nonperturbative effects. Phys. Rev. D 77, 126009 (2008). arXiv:0802.1557 [hep-th] ADSGoogle Scholar
  97. 97.
    C.P. Burgess, L. McAllister, Challenges for string cosmology. Class. Quantum Gravity 28, 204002 (2011). arXiv:1108.2660 [hep-th] ADSMathSciNetMATHCrossRefGoogle Scholar
  98. 98.
    S. Mishra, W. Xue, R. Brandenberger, U. Yajnik, Supersymmetry breaking and dilaton stabilization in string gas cosmology. arXiv:1103.1389 [hep-th]
  99. 99.
    S. Watson, R.H. Brandenberger, Isotropization in brane gas cosmology. Phys. Rev. D 67, 043510 (2003). arXiv:hep-th/0207168 ADSMathSciNetGoogle Scholar
  100. 100.
    V.F. Mukhanov, H.A. Feldman, R.H. Brandenberger, Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions. Phys. Rep. 215, 203 (1992) ADSMathSciNetCrossRefGoogle Scholar
  101. 101.
    R.H. Brandenberger, Lectures on the theory of cosmological perturbations. Lect. Notes Phys. 646, 127 (2004). arXiv:hep-th/0306071 ADSMATHCrossRefGoogle Scholar
  102. 102.
    V.F. Mukhanov, Quantum theory of gauge invariant cosmological perturbations. Sov. Phys. JETP 67(7), 1297 (1988) [Zh. Eksp. Teor. Fiz. 94, 1 (1988)] MathSciNetGoogle Scholar
  103. 103.
    V.F. Mukhanov, Gravitational instability of the universe filled with a scalar field. JETP Lett. 41, 493 (1985) [Pisma Zh. Eksp. Teor. Fiz. 41, 402 (1985)] ADSGoogle Scholar
  104. 104.
    M. Sasaki, Large scale quantum fluctuations in the inflationary universe. Prog. Theor. Phys. 76, 1036 (1986) ADSCrossRefGoogle Scholar
  105. 105.
    V.N. Lukash, Production of phonons in an isotropic universe. Sov. Phys. JETP 52, 807 (1980) [Zh. Eksp. Teor. Fiz. 79] ADSMathSciNetGoogle Scholar
  106. 106.
    J.M. Bardeen, P.J. Steinhardt, M.S. Turner, Spontaneous creation of almost scale—free density perturbations in an inflationary universe. Phys. Rev. D 28, 679 (1983) ADSCrossRefGoogle Scholar
  107. 107.
    R.H. Brandenberger, R. Kahn, Cosmological perturbations in inflationary universe models. Phys. Rev. D 29, 2172 (1984) ADSGoogle Scholar
  108. 108.
    D.H. Lyth, Large scale energy density perturbations and inflation. Phys. Rev. D 31, 1792 (1985) ADSMathSciNetGoogle Scholar
  109. 109.
    N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982), 340p MATHCrossRefGoogle Scholar
  110. 110.
    C. Kiefer, I. Lohmar, D. Polarski, A.A. Starobinsky, Pointer states for primordial fluctuations in inflationary cosmology. Class. Quantum Gravity 24, 1699 (2007). arXiv:astro-ph/0610700 ADSMathSciNetMATHCrossRefGoogle Scholar
  111. 111.
    P. Martineau, On the decoherence of primordial fluctuations during inflation. Class. Quantum Gravity 24, 5817 (2007). arXiv:astro-ph/0601134 ADSMathSciNetMATHCrossRefGoogle Scholar
  112. 112.
    S. Alexander, T. Biswas, R.H. Brandenberger, On the transfer of adiabatic fluctuations through a nonsingular cosmological bounce. arXiv:0707.4679 [hep-th]
  113. 113.
    X. Gao, Y. Wang, W. Xue, R. Brandenberger, Fluctuations in a Hořava-Lifshitz bouncing cosmology. J. Cosmol. Astropart. Phys. 1002, 020 (2010). arXiv:0911.3196 [hep-th] ADSCrossRefGoogle Scholar
  114. 114.
    X. Gao, Y. Wang, R. Brandenberger, A. Riotto, Cosmological perturbations in Hořava-Lifshitz gravity. Phys. Rev. D 81, 083508 (2010). arXiv:0905.3821 [hep-th] ADSGoogle Scholar
  115. 115.
    Y.F. Cai, W. Xue, R. Brandenberger, X.m. Zhang, Thermal fluctuations and bouncing cosmologies. J. Cosmol. Astropart. Phys. 0906, 037 (2009). arXiv:0903.4938 [hep-th] ADSCrossRefGoogle Scholar
  116. 116.
    J.C. Hwang, E.T. Vishniac, Gauge-invariant joining conditions for cosmological perturbations. Astrophys. J. 382, 363 (1991) ADSMathSciNetCrossRefGoogle Scholar
  117. 117.
    N. Deruelle, V.F. Mukhanov, On matching conditions for cosmological perturbations. Phys. Rev. D 52, 5549 (1995). arXiv:gr-qc/9503050 ADSGoogle Scholar
  118. 118.
    R. Durrer, F. Vernizzi, Adiabatic perturbations in pre big bang models: matching conditions and scale invariance. Phys. Rev. D 66, 083503 (2002). arXiv:hep-ph/0203275 ADSGoogle Scholar
  119. 119.
    D.H. Lyth, The failure of cosmological perturbation theory in the new ekpyrotic scenario. Phys. Lett. B 526, 173 (2002). hep-ph/0110007 ADSMATHCrossRefGoogle Scholar
  120. 120.
    D.H. Lyth, The primordial curvature perturbation in the ekpyrotic universe. Phys. Lett. B 524, 1 (2002). hep-ph/0106153 ADSMATHCrossRefGoogle Scholar
  121. 121.
    R. Brandenberger, F. Finelli, On the spectrum of fluctuations in an effective field theory of the ekpyrotic universe. J. High Energy Phys. 0111, 056 (2001). hep-th/0109004 ADSMathSciNetCrossRefGoogle Scholar
  122. 122.
    J. Khoury, B.A. Ovrut, P.J. Steinhardt, N. Turok, Density perturbations in the ekpyrotic scenario. Phys. Rev. D 66, 046005 (2002). hep-th/0109050 ADSMathSciNetGoogle Scholar
  123. 123.
    R.H. Brandenberger, Processing of cosmological perturbations in a cyclic cosmology. Phys. Rev. D 80, 023535 (2009). arXiv:0905.1514 [hep-th] ADSMathSciNetGoogle Scholar
  124. 124.
    P.J. Steinhardt, N. Turok, Cosmic evolution in a cyclic universe. Phys. Rev. D 65, 126003 (2002). hep-th/0111098 ADSMathSciNetGoogle Scholar
  125. 125.
    Y. Cai, R. Brandenberger, X. Zhang, The matter bounce curvaton scenario. J. Cosmol. Astropart. Phys. 1103, 003 (2011). arXiv:1101.0822 [hep-th] ADSCrossRefGoogle Scholar
  126. 126.
    A. Cerioni, R.H. Brandenberger, Cosmological perturbations in the projectable version of Horava-Lifshitz gravity. J. Cosmol. Astropart. Phys. 1108, 015 (2011). arXiv:1007.1006 [hep-th] ADSCrossRefGoogle Scholar
  127. 127.
    A. Cerioni, R.H. Brandenberger, Cosmological perturbations in the “healthy extension” of Horava-Lifshitz gravity. arXiv:1008.3589 [hep-th]
  128. 128.
    Y.F. Cai, W. Xue, R. Brandenberger, X. Zhang, Non-Gaussianity in a matter bounce. J. Cosmol. Astropart. Phys. 0905, 011 (2009). arXiv:0903.0631 [astro-ph.CO] ADSCrossRefGoogle Scholar
  129. 129.
    X. Chen, Primordial non-Gaussianities from inflation models. Adv. Astron. 2010, 638979 (2010). arXiv:1002.1416 [astro-ph.CO] CrossRefGoogle Scholar
  130. 130.
    J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models. J. High Energy Phys. 0305, 013 (2003). arXiv:astro-ph/0210603 ADSMathSciNetCrossRefGoogle Scholar
  131. 131.
    H. Li, J.Q. Xia, R. Brandenberger, X. Zhang, Constraints on models with a break in the primordial power spectrum. Phys. Lett. B 690, 451 (2010). arXiv:0903.3725 [astro-ph.CO] ADSCrossRefGoogle Scholar
  132. 132.
    R.H. Brandenberger, A. Nayeri, S.P. Patil, C. Vafa, String gas cosmology and structure formation. Int. J. Mod. Phys. A 22, 3621 (2007). arXiv:hep-th/0608121 ADSMathSciNetMATHCrossRefGoogle Scholar
  133. 133.
    R.H. Brandenberger, A. Nayeri, S.P. Patil, C. Vafa, Tensor modes from a primordial Hagedorn phase of string cosmology. Phys. Rev. Lett. 98, 231302 (2007). arXiv:hep-th/0604126 ADSCrossRefGoogle Scholar
  134. 134.
    R.H. Brandenberger et al., More on the spectrum of perturbations in string gas cosmology. J. Cosmol. Astropart. Phys. 0611, 009 (2006). arXiv:hep-th/0608186 ADSMathSciNetCrossRefGoogle Scholar
  135. 135.
    N. Kaloper, L. Kofman, A. Linde, V. Mukhanov, On the new string theory inspired mechanism of generation of cosmological perturbations. J. Cosmol. Astropart. Phys. 0610, 006 (2006). arXiv:hep-th/0608200 ADSCrossRefGoogle Scholar
  136. 136.
    N. Deo, S. Jain, O. Narayan, C.I. Tan, The effect of topology on the thermodynamic limit for a string gas. Phys. Rev. D 45, 3641 (1992) ADSMathSciNetGoogle Scholar
  137. 137.
    A. Nayeri, Inflation free, stringy generation of scale-invariant cosmological fluctuations in D=3+1 dimensions. arXiv:hep-th/0607073
  138. 138.
    L.P. Grishchuk, Amplification of gravitational waves in an isotropic universe. Sov. Phys. JETP 40, 409 (1975) [Zh. Eksp. Teor. Fiz. 67, 825 (1974)] ADSGoogle Scholar
  139. 139.
    B. Chen, Y. Wang, W. Xue, R. Brandenberger, String gas cosmology and non-Gaussianities. arXiv:0712.2477 [hep-th]
  140. 140.
    E. Witten, Cosmic superstrings. Phys. Lett. B 153, 243 (1985) ADSMathSciNetCrossRefGoogle Scholar
  141. 141.
    E.J. Copeland, R.C. Myers, J. Polchinski, Cosmic F and D strings. J. High Energy Phys. 0406, 013 (2004). hep-th/0312067 ADSMathSciNetCrossRefGoogle Scholar
  142. 142.
    N. Kaiser, A. Stebbins, Microwave anisotropy due to cosmic strings. Nature 310, 391 (1984) ADSCrossRefGoogle Scholar
  143. 143.
    S. Amsel, J. Berger, R.H. Brandenberger, Detecting cosmic strings in the CMB with the Canny algorithm. J. Cosmol. Astropart. Phys. 0804, 015 (2008). arXiv:0709.0982 [astro-ph] ADSCrossRefGoogle Scholar
  144. 144.
    A. Stewart, R. Brandenberger, Edge detection, cosmic strings and the south pole telescope. J. Cosmol. Astropart. Phys. 0902, 009 (2009). arXiv:0809.0865 [astro-ph] ADSCrossRefGoogle Scholar
  145. 145.
    R.J. Danos, R.H. Brandenberger, Canny algorithm, cosmic strings and the cosmic microwave background. Int. J. Mod. Phys. D 19, 183 (2010). arXiv:0811.2004 [astro-ph] ADSMATHCrossRefGoogle Scholar
  146. 146.
    R.J. Danos, R.H. Brandenberger, Searching for signatures of cosmic superstrings in the CMB. J. Cosmol. Astropart. Phys. 1002, 033 (2010). arXiv:0910.5722 [astro-ph.CO] ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Physics DepartmentMcGill UniversityMontrealCanada

Personalised recommendations