Advertisement

PUFs: Myth, Fact or Busted? A Security Evaluation of Physically Unclonable Functions (PUFs) Cast in Silicon

  • Stefan Katzenbeisser
  • Ünal Kocabaş
  • Vladimir Rožić
  • Ahmad-Reza Sadeghi
  • Ingrid Verbauwhede
  • Christian Wachsmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7428)

Abstract

Physically Unclonable Functions (PUFs) are an emerging technology and have been proposed as central building blocks in a variety of cryptographic protocols and security architectures. However, the security features of PUFs are still under investigation: Evaluation results in the literature are difficult to compare due to varying test conditions, different analysis methods and the fact that representative data sets are publicly unavailable.

In this paper, we present the first large-scale security analysis of ASIC implementations of the five most popular intrinsic electronic PUF types, including arbiter, ring oscillator, SRAM, flip-flop and latch PUFs. Our analysis is based on PUF data obtained at different operating conditions from 96 ASICs housing multiple PUF instances, which have been manufactured in TSMC 65 nm CMOS technology. In this context, we present an evaluation methodology and quantify the robustness and unpredictability properties of PUFs. Since all PUFs have been implemented in the same ASIC and analyzed with the same evaluation methodology, our results allow for the first time a fair comparison of their properties.

Keywords

Physically Unclonable Functions (PUFs) ASIC implementation evaluation framework unpredictability robustness 

References

  1. 1.
    Armknecht, F., Maes, R., Sadeghi, A.R., Standaert, F.X., Wachsmann, C.: A formal foundation for the security features of physical functions. In: IEEE Symposium on Security and Privacy (SSP), pp. 397–412. IEEE Computer Society (May 2011)Google Scholar
  2. 2.
    Armknecht, F., Maes, R., Sadeghi, A.-R., Sunar, B., Tuyls, P.: Memory Leakage-Resilient Encryption Based on Physically Unclonable Functions. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 685–702. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Dodis, Y., Reyzin, L., Smith, A.: Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Eichhorn, I., Koeberl, P., van der Leest, V.: Logically reconfigurable PUFs: Memory-based secure key storage. In: ACM Workshop on Scalable Trusted Computing (ACM STC), pp. 59–64. ACM, New York (2011)Google Scholar
  5. 5.
    Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Controlled physical random functions. In: Computer Security Applications Conference (ACSAC), pp. 149–160. IEEE (2002)Google Scholar
  6. 6.
    Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Silicon physical random functions. In: ACM Conference on Computer and Communications Security (ACM CCS), pp. 148–160. ACM, New York (2002)Google Scholar
  7. 7.
    Guajardo, J., Kumar, S., Schrijen, G.J., Tuyls, P.: FPGA Intrinsic PUFs and Their Use for IP Protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Hammouri, G., Dana, A., Sunar, B.: CDs Have Fingerprints Too. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 348–362. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Holcomb, D.E., Burleson, W.P., Fu, K.: Power-Up SRAM state as an identifying fingerprint and source of true random numbers. IEEE Transactions on Computers 58(9), 1198–1210 (2009)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ignatenko, T., Schrijen, G.J., Škorić, B., Tuyls, P., Willems, F.: Estimating the Secrecy-Rate of physical unclonable functions with the Context-Tree weighting method. In: IEEE International Symposium on Information Theory (ISIT), pp. 499–503. IEEE (July 2006)Google Scholar
  11. 11.
    Intrinsic ID: Product webpage (November 2011), http://www.intrinsic-id.com/products.html
  12. 12.
    Kampstra, P.: Beanplot: A boxplot alternative for visual comparison of distributions. Journal of Statistical Software 28(1), 1–9 (2008)Google Scholar
  13. 13.
    Katzenbeisser, S., Kocabaş, Ü., Rožić, V., Sadeghi, A.R., Verbauwhede, I., Wachsmann, C.: PUFs: Myth, fact or busted? A security evaluation of physically unclonable functions (PUFs) cast in silicon. Cryptology ePrint Archive (2012)Google Scholar
  14. 14.
    Kumar, S.S., Guajardo, J., Maes, R., Schrijen, G.J., Tuyls, P.: Extended abstract: The butterfly PUF protecting IP on every FPGA. In: Workshop on Hardware-Oriented Security (HOST), pp. 67–70. IEEE (June 2008)Google Scholar
  15. 15.
    Lee, J.W., Lim, D., Gassend, B., Suh, E.G., van Dijk, M., Devadas, S.: A technique to build a secret key in integrated circuits for identification and authentication applications. In: Symposium on VLSI Circuits, pp. 176–179. IEEE (June 2004)Google Scholar
  16. 16.
    van der Leest, V., Schrijen, G.J., Handschuh, H., Tuyls, P.: Hardware intrinsic security from D flip-flops. In: ACM Workshop on Scalable Trusted Computing (ACM STC), pp. 53–62. ACM, New York (2010)CrossRefGoogle Scholar
  17. 17.
    Lim, D., Lee, J.W., Gassend, B., Suh, E.G., van Dijk, M., Devadas, S.: Extracting secret keys from integrated circuits. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 13(10), 1200–1205 (2005)CrossRefGoogle Scholar
  18. 18.
    Lin, L., Holcomb, D., Krishnappa, D.K., Shabadi, P., Burleson, W.: Low-power sub-threshold design of secure physical unclonable functions. In: International Symposium on Low-Power Electronics and Design (ISLPED), pp. 43–48. IEEE (August 2010)Google Scholar
  19. 19.
    Maes, R., Tuyls, P., Verbauwhede, I.: Intrinsic PUFs from flip-flops on reconfigurable devices (November 2008)Google Scholar
  20. 20.
    Maes, R., Verbauwhede, I.: Physically unclonable functions: A study on the state of the art and future research directions. In: Towards Hardware-Intrinsic Security. Information Security and Cryptography, pp. 3–37. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Maiti, A., Casarona, J., McHale, L., Schaumont, P.: A large scale characterization of RO-PUF. In: International Symposium on Hardware-Oriented Security and Trust (HOST), pp. 94–99. IEEE (June 2010)Google Scholar
  22. 22.
    Majzoobi, M., Koushanfar, F., Potkonjak, M.: Testing techniques for hardware security. In: International Test Conference (ITC), pp. 1–10. IEEE (October 2008)Google Scholar
  23. 23.
    Marsaglia, G.: The Marsaglia random number CDROM including the diehard battery of tests of randomness, http://www.stat.fsu.edu/pub/diehard/
  24. 24.
    Öztürk, E., Hammouri, G., Sunar, B.: Towards robust low cost authentication for pervasive devices. In: International Conference on Pervasive Computing and Communications (PerCom), pp. 170–178. IEEE, Washington, DC (2008)Google Scholar
  25. 25.
    Pappu, R., Recht, B., Taylor, J., Gershenfeld, N.: Physical One-Way functions. Science 297(5589), 2026–2030 (2002)CrossRefGoogle Scholar
  26. 26.
    Rührmair, U., Sehnke, F., Sölter, J., Dror, G., Devadas, S., Schmidhuber, J.: Modeling attacks on physical unclonable functions. In: ACM Conference on Computer and Communications Security (ACM CCS), pp. 237–249. ACM, New York (2010)Google Scholar
  27. 27.
    Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson, M., Vangel, M., Banks, D., Heckert, A., Dray, J., Vo, S.: A statistical test suite for random and pseudorandom number generators for cryptographic applications. Special Publication 800-22 Revision 1a, NIST (April 2010)Google Scholar
  28. 28.
    Sadeghi, A.R., Visconti, I., Wachsmann, C.: Enhancing RFID security and privacy by physically unclonable functions. In: Towards Hardware-Intrinsic Security. Information Security and Cryptography, pp. 281–305. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  29. 29.
    Schulz, S., Sadeghi, A.R., Wachsmann, C.: Short paper: Lightweight remote attestation using physical functions. In: Proceedings of the Fourth ACM Conference on Wireless Network Security (ACM WiSec), pp. 109–114. ACM, New York (2011)CrossRefGoogle Scholar
  30. 30.
    Škorić, B., Maubach, S., Kevenaar, T., Tuyls, P.: Information-theoretic analysis of capacitive physical unclonable functions. Journal of Applied Physics 100(2) (July 2006)Google Scholar
  31. 31.
    Su, Y., Holleman, J., Otis, B.P.: A digital 1.6 pJ/bit chip identification circuit using process variations. IEEE Journal of Solid-State Circuits 43(1), 69–77 (2008)CrossRefGoogle Scholar
  32. 32.
    Suh, E.G., Devadas, S.: Physical unclonable functions for device authentication and secret key generation. In: ACM/IEEE Design Automation Conference (DAC), pp. 9–14. IEEE (June 2007)Google Scholar
  33. 33.
    Tuyls, P., Batina, L.: RFID-Tags for Anti-counterfeiting. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 115–131. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  34. 34.
    Tuyls, P., Škorić, B., Ignatenko, T., Willems, F., Schrijen, G.J.: Entropy estimation for optical PUFs based on Context-Tree weighting methods security with noisy data. In: Security with Noisy Data, pp. 217–233. Springer, London (2007)CrossRefGoogle Scholar
  35. 35.
    Tuyls, P., Škorić, B., Stallinga, S., Akkermans, A.H.M., Ophey, W.: Information-Theoretic Security Analysis of Physical Uncloneable Functions. In: Patrick, A.S., Yung, M. (eds.) FC 2005. LNCS, vol. 3570, pp. 141–155. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  36. 36.
    Verayo, Inc.: Product webpage (November 2011), http://www.verayo.com/product/products.html
  37. 37.
    Škorić, B., Tuyls, P., Ophey, W.: Robust Key Extraction from Physical Uncloneable Functions. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 407–422. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  38. 38.
    Willems, F.M.J.: CTW website, http://www.ele.tue.nl/ctw/
  39. 39.
    Willems, F.M.J., Shtarkov, Y.M., Tjalkens, T.J.: The context-tree weighting method: basic properties. IEEE Transactions on Information Theory 41(3), 653–664 (1995)zbMATHCrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2012

Authors and Affiliations

  • Stefan Katzenbeisser
    • 1
  • Ünal Kocabaş
    • 1
  • Vladimir Rožić
    • 3
  • Ahmad-Reza Sadeghi
    • 2
  • Ingrid Verbauwhede
    • 3
  • Christian Wachsmann
    • 1
  1. 1.Technische Universität Darmstadt (CASED)Germany
  2. 2.Technische Universität Darmstadt and Fraunhofer SIT DarmstadtGermany
  3. 3.KU Leuven, ESAT/COSICLeuvenBelgium

Personalised recommendations