Advertisement

Unified and Optimized Linear Collision Attacks and Their Application in a Non-profiled Setting

  • Benoît Gérard
  • François-Xavier Standaert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7428)

Abstract

Side-channel collision attacks are one of the most investigated techniques allowing the combination of mathematical and physical cryptanalysis. In this paper, we discuss their relevance in the security evaluation of leaking devices with two main contributions. On the one hand, we suggest that the exploitation of linear collisions in block ciphers can be naturally re-written as a Low Density Parity Check Code decoding problem. By combining this re-writing with a Bayesian extension of the collision detection techniques, we succeed in improving the efficiency and error tolerance of previously introduced attacks. On the other hand, we provide various experiments in order to discuss the practicality of such attacks compared to standard DPA. Our results exhibit that collision attacks are less efficient in classical implementation contexts, e.g. 8-bit microcontrollers leaking according to a linear power consumption model. We also observe that the detection of collisions in software devices may be difficult in the case of optimized implementations, because of less regular assembly codes. Interestingly, the soft decoding approach is particularly useful in these more challenging scenarios. Finally, we show that there exist (theoretical) contexts in which collision attacks succeed in exploiting leakages whereas all other non-profiled side-channel attacks fail.

Keywords

Block Cipher Check Node Collision Attack Correlation Power Analysis Template Attack 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bennata, A., Burshtein, D.: Design and analysis of nonbinary LDPC codes for arbitrary discrete-memoryless channels. IEEE Transactions on Information Theory 52, 549–583 (2006)CrossRefGoogle Scholar
  2. 2.
    Bogdanov, A.: Improved Side-Channel Collision Attacks on AES. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 84–95. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Bogdanov, A.: Multiple-Differential Side-Channel Collision Attacks on AES. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 30–44. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Bogdanov, A., Kizhvatov, I.: Beyond the Limits of DPA: Combined Side-Channel Collision Attacks. IEEE Transactions on Computers 61(8), 1153–1164 (2012)CrossRefGoogle Scholar
  5. 5.
    Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Chari, S., Rao, J.R., Rohatgi, P.: Template Attacks. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Improved Collision-Correlation Power Analysis on First Order Protected AES. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 49–62. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Doget, J., Prouff, E., Rivain, M., Standaert, F.-X.: Univariate side channel attacks and leakage modeling. Journal of Cryptographic Engineering 1(2), 123–144 (2011)CrossRefGoogle Scholar
  9. 9.
    Gallager, R.G.: Low density parity check codes. Transactions of the IRE Professional Group on Information Theory IT-8, 21–28 (1962)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)Google Scholar
  11. 11.
    Ledig, H., Muller, F., Valette, F.: Enhancing Collision Attacks. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 176–190. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Mangard, S.: Hardware Countermeasures against DPA – A Statistical Analysis of Their Effectiveness. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 222–235. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-Enhanced Power Analysis Collision Attack. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 125–139. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Moradi, A.: Statistical Tools Flavor Side-Channel Collision Attacks. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 428–445. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Poettering, B.: Fast AES implementation for Atmel’s AVR microcontrollers, http://point-at-infinity.org/avraes/
  16. 16.
    Renauld, M., Kamel, D., Standaert, F.-X., Flandre, D.: Information Theoretic and Security Analysis of a 65-Nanometer DDSLL AES S-Box. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 223–239. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Schindler, W., Lemke, K., Paar, C.: A Stochastic Model for Differential Side Channel Cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 30–46. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Schramm, K., Leander, G., Felke, P., Paar, C.: A Collision-Attack on AES: Combining Side Channel and Differential-Attack. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 163–175. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Schramm, K., Wollinger, T., Paar, C.: A New Class of Collision Attacks and Its Application to DES. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 206–222. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  20. 20.
    Standaert, F.-X., Malkin, T., Yung, M.: A Unified Framework for the Analysis of Side-Channel Key Recovery Attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Veyrat-Charvillon, N., Gérard, B., Renauld, M., Standaert, F.-X.: An optimal key enumeration algorithm and its application to side-channel attacks. Cryptology ePrint Archive, Report 2011/610 (2011), http://eprint.iacr.org/2011/610
  22. 22.
    Veyrat-Charvillon, N., Standaert, F.-X.: Generic Side-Channel Distinguishers: Improvements and Limitations. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 354–372. Springer, Heidelberg (2011)Google Scholar

Copyright information

© International Association for Cryptologic Research 2012

Authors and Affiliations

  • Benoît Gérard
    • 1
  • François-Xavier Standaert
    • 1
  1. 1.UCL Crypto GroupUniversité catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations