Evolution Strategies for Optimizing Rectangular Cartograms

  • Kevin Buchin
  • Bettina Speckmann
  • Sander Verdonschot
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7478)

Abstract

A rectangular cartogram is a type of map where every region is a rectangle. The size of the rectangles is chosen such that their areas represent a geographic variable such as population or GDP. In recent years several algorithms for the automated construction of rectangular cartograms have been proposed, some of which are based on rectangular duals of the dual graph of the input map. In this paper we present a new approach to efficiently search within the exponentially large space of all possible rectangular duals. We employ evolution strategies that find rectangular duals which can be used for rectangular cartograms with correct adjacencies and (close to) zero cartographic error. This is a considerable improvement upon previous methods that have to either relax adjacency requirements or deal with larger errors. We present extensive experimental results for a large variety of data sets.

Keywords

Rectangular cartogram evolution strategy regular edge labeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bhasker, J., Sahni, S.: A linear algorithm to check for the existence of a rectangular dual of a planar triangulated graph. Networks 7, 307–317 (1987)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Buchin, K., Speckmann, B., Verdonschot, S.: Optimizing Regular Edge Labelings. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 117–128. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Dent, B.D.: Cartography - thematic map design, 5th edn. McGraw-Hill (1999)Google Scholar
  4. 4.
    Dorling, D.: Area Cartograms: their Use and Creation. Concepts and Techniques in Modern Geography, vol. 59. University of East Anglia, Environmental Publications, Norwich (1996)Google Scholar
  5. 5.
    Dougenik, J.A., Chrisman, N.R., Niemeyer, D.R.: An algorithm to construct continous area cartograms. Professional Geographer 3, 75–81 (1985)CrossRefGoogle Scholar
  6. 6.
    Fusy, É.: Combinatoire des cartes planaires et applications algorithmiques. PhD thesis, École Polytechnique (2007)Google Scholar
  7. 7.
    Fusy, É.: Transversal structures on triangulations: A combinatorial study and straight-line drawings. Disc. Math. 309(7), 1870–1894 (2009)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Gastner, M., Newman, M.: Diffusion-based method for producing density-equalizing maps. Proceedings of the National Academy of Sciences of the United States of America (PNAS) 101(20), 7499–7504 (2004)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Heilmann, R., Keim, D.A., Panse, C., Sips, M.: Recmap: Rectangular map approximations. In: Proceedings of the IEEE Symposium on Information Visualization (INFOVIS), pp. 33–40 (2004)Google Scholar
  10. 10.
    Inoue, R., Kitaura, K., Shimizu, E.: New solution for construction of rectilinear area cartogram. In: Proceedings of 24th International Cartography Conference. CD-ROM (2009)Google Scholar
  11. 11.
    Kant, G., He, X.: Regular edge labeling of 4-connected plane graphs and its applications in graph drawing problems. Theoretical Computer Science 172(1-2), 175–193 (1997)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Koźmiński, K., Kinnen, E.: Rectangular dual of planar graphs. Networks 5, 145–157 (1985)Google Scholar
  13. 13.
  14. 14.
    Olson, J.: Noncontiguous area cartograms. Professional Geographer 28, 371–380 (1976)CrossRefGoogle Scholar
  15. 15.
    Raisz, E.: The rectangular statistical cartogram. Geographical Review 24, 292–296 (1934)CrossRefGoogle Scholar
  16. 16.
    Speckmann, B., van Kreveld, M., Florisson, S.: A linear programming approach to rectangular cartograms. In: Progress in Spatial Data Handling: Proc. 12th International Symposium on Spatial Data Handling, pp. 529–546. Springer (2006)Google Scholar
  17. 17.
    Tobler, W.: Pseudo-cartograms. The American Cartographer 13, 43–50 (1986)CrossRefGoogle Scholar
  18. 18.
    van Kreveld, M., Speckmann, B.: On rectangular cartograms. Computational Geometry: Theory and Applications 37(3), 175–187 (2007)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Kevin Buchin
    • 1
  • Bettina Speckmann
    • 1
  • Sander Verdonschot
    • 2
  1. 1.Department of Mathematics and Computing ScienceTU EindhovenEindhovenThe Netherlands
  2. 2.School of Computer ScienceCarleton UniversityOttawaCanada

Personalised recommendations