Mental Tasks Temporal Classification Using an Architecture Based on ANFIS and Recurrent Neural Networks

  • Emmanuel Morales-Flores
  • Juan Manuel Ramírez-Cortés
  • Pilar Gómez-Gil
  • Vicente Alarcón-Aquino
Part of the Studies in Computational Intelligence book series (SCI, volume 451)


In this paper, an architecture based on adaptive neuro-fuzzy inference systems (ANFIS) assembled to recurrent neural networks, applied to the problem of mental tasks temporal classification, is proposed. The electroencephalographic signals (EEG) are pre-processed through band-pass filtering in order to separate the set of energy signals in alpha and beta bands. The energy in each band is represented by fuzzy sets obtained through an ANFIS system, and the temporal sequence corresponding to the combination to be detected, associated to the specific mental task, is entered into a recurrent neural networks. This experiment has been carried out in the context of brain-computer-interface (BCI) systems development. Experimentation using EEG signals corresponding to mental tasks exercises, obtained from a database available to the international community for research purposes, is reported. Two recurrent neural networks are used for comparison purposes: Elman network and a fully connected recurrent neural network (FCRNN) trained by RTRL-EKF (real time recurrent learning – extended Kalman filter). A classification rate of 88.12% in average was obtained through the FCRNN during the generalization stage.


Motor Imagery Extended Kalman Filter Empirical Mode Decomposition Recurrent Neural Network Mental Task 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brunner, P., Bianchi, L., Guger, C., Cincotti, F., Schalk, G.: Current trends in hardware and software for brain–computer interfaces (BCIs). Journal of Neural Engineering 8, 025001 (2011)CrossRefGoogle Scholar
  2. 2.
    Bashashati, M., Fatourechi, R., Ward, K., Birch, G.E.: A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals. Journal of Neural Engineering 4(2), R32–R57 (2007)Google Scholar
  3. 3.
    Berger, T.W., Chapin, J.K., Gerhardt, G.A., McFarland, D.J., Principe, J.C., Soussou, W.V., Taylor, D.M., Tresco, P.A.: WTEC Panel Report on International Assessment of Research and Development in Brain-Computer Interfaces, World Technology Evaluation Center, Inc. (2007),
  4. 4.
    Neuper, C., Scherer, R., Wriessnegger, S., Pfurtscheller, G.: Motor imagery and action observation: Modulation of sensorimotor brain rhythms during mental control of a brain–computer interface. Clinical Neurophysiology 120(2), 239–247 (2009)CrossRefGoogle Scholar
  5. 5.
    Solis-Escalante, T., Muller-Putz, G., Brunner, C., Kaiser, V., Pfurtscheller, G.: Analysis of sensorimotor rhythms for the implementation of a brain switch for healthy subjects. Biomedical Signal Processing and Control 5(1), 15–20 (2010)CrossRefGoogle Scholar
  6. 6.
    McFarland, D.J., Sarnacki, W.A., Townsend, G., Vaughan, T., Wolpaw, J.R.: The P-300-based brain–computer interface (BCI): Effects of stimulus rate. Clinical Neurophysiology 122(4), 731–737 (2011)CrossRefGoogle Scholar
  7. 7.
    Ramirez-Cortes, J.M., Alarcon-Aquino, V., Rosas-Cholula, G., Gomez-Gil, P., Escamilla-Ambrosio, J.: Anfis-Based P300 Rhythm Detection Using Wavelet Feature Extraction on Blind Source Separated EEG Signals. In: Ao, S., Amouzegar, M., Rieger, B.B. (eds.) Intelligent Automation and Systems Engineering, ch. 27. LNEE, vol. 103, pp. 353–365. Springer, New York (2011)CrossRefGoogle Scholar
  8. 8.
    Shyu, K.K., Lee, P.L., Liu, Y.J., Sie, J.J.: Dual-frequency steady-state visual evoked potential for brain computer interface. Neuroscience Letters 483(1), 28–31 (2010)CrossRefGoogle Scholar
  9. 9.
    Horki, P., Solis-Escalante, T., Neuper, C., Muller-Putz, G.R.: Hybrid Motor Imagery and Steady-state Visual Evoked Potential Based BCI for Artificial Arm Control. In: Proceedings of the First Tools for Brain Computer Interaction Workshop, Graz, Austria, p. 46 (2010)Google Scholar
  10. 10.
    Wang, H., Li, C.S., Li, Y.G.: Brain-computer interface design based on slow cortical potentials using matlab/simulink. In: Proceedings of the International Conference on Mechatronics and Automation, Changchun, China, pp. 1044–1048 (2009)Google Scholar
  11. 11.
    Khare, V., Santhosh, J., Anand, S., Bhatia, M.: Performance comparison of three artificial neural network methods for classification of electroencephalograph signals of five mental tasks. J. Biomedical Science and Engineering 3, 200–205 (2010)Google Scholar
  12. 12.
    Wang, J., Xu, G., Wang, L., Zhang, H.: Feature extraction of brain-computer interface based on improved multivariate adaptive autoregressive models. In: Proceedings of the 3rd International Conference on Biomedical Engineering and Informatics (BMEI), Yantai, China, pp. 895–898 (2010)Google Scholar
  13. 13.
    Kołodziej, M., Majkowski, A., Rak, R.J.: A New Method of EEG Classification for BCI with Feature Extraction Based on Higher Order Statistics of Wavelet Components and Selection with Genetic Algorithms. In: Dobnikar, A., Lotrič, U., Šter, B. (eds.) ICANNGA 2011, Part I. LNCS, vol. 6593, pp. 280–289. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Vijean, V., Hariharan, M., Saidatul, A., Yaacob, S.: Mental tasks classifications using S-transform for BCI applications. In: Proceedings of the IEEE Conference on Sustainable Utilization and Development in Engineering and Technology, Semenyih, Malaysia, pp. 69–73 (2011)Google Scholar
  15. 15.
    Lotte, F.: The use of fuzzy inference systems for classification in EEG-based brain-computer interfaces. In: Proceedings of the 3rd International Brain-Computer Interfaces Workshop and Training Course, Graz, Austria (2006)Google Scholar
  16. 16.
    Zhang, L., He, W., He, C., Wang, P.: Improving mental task classification by adding high frequency band information. Journal of Medical Systems 34(1), 51–60 (2010)CrossRefGoogle Scholar
  17. 17.
    Palaniappan, R.: Utilizing Gamma band to improve mental task based brain-computer interface design. IEEE Transactions on Neural Systems and Rehabilitation Engineering 14(3), 299–303 (2006)CrossRefGoogle Scholar
  18. 18.
    Park, C., Looney, D., Kidmose, P., Ungstrup, M., Mandic, D.P.: Time-frequency analysis of EEG asymmetry using bivariate Empirical Mode Decomposition. IEEE Transactions on Neural Systems and Rehabilitation Engineering 19(4), 366–373 (2011)CrossRefGoogle Scholar
  19. 19.
    Kousarrizi, M.R.N., Ghanbari, A.A., Teshnehlab, M., Shorehdeli, M.A., Gharaviri, A.: Feature extraction and classification of EEG signals using Wavelet Transform, SVM and artificial neural networks for brain computer interfaces. In: Proceedings of the International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing, Shanghai, China, pp. 352–355 (2009)Google Scholar
  20. 20.
    Forney, E.M., Anderson, C.W.: Classification of EEG during imagined mental tasks by forecasting with Elman recurrent neural networks. In: Proceedings of the International Joint Conference on Neural Networks, San Jose, California, USA, pp. 2749–2755 (2011)Google Scholar
  21. 21.
    Coyle, D., McGinnity, T.M., Prasad, G.: Improving the separability of multiple EEG features for a BCI by neural-time-series-prediction-preprocessing. Biomedical Signal Processing and Control 5(3), 196–204 (2010)CrossRefGoogle Scholar
  22. 22.
    Oliver, G., Gedeon, T.: Brain Computer Interfaces: A Recurrent Neural Network Approach. Australian National University (2010)Google Scholar
  23. 23.
    Fuchs, E., Gruber, C., Reitmaier, T., Sick, B.: Processing short-term and long-term information with a combination of polynomial approximation techniques and time-delay neural networks. IEEE Transactions on Neural Networks 20(9), 1450–1462 (2009)CrossRefGoogle Scholar
  24. 24.
    Gomez-Gil, P.: Long term prediction, chaos and artificial neural networks. Where is the meeting point? Engineering Letters 15(1), 1–5 (2007)Google Scholar
  25. 25.
    Skarda, C., Freeman, W.: How brains make chaos in order to make sense of the world. Behavioral and Brain Sciences 10, 161–195 (1987)CrossRefGoogle Scholar
  26. 26.
    Elman, J.: Finding structure in time. Cognitive Science 14, 179–211 (1990)CrossRefGoogle Scholar
  27. 27.
    Čerňanský, M.: Training Recurrent Neural Network Using Multistream Extended Kalman Filter on Multicore Processor and Cuda Enabled Graphic Processor Unit. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) ICANN 2009, Part I. LNCS, vol. 5768, pp. 381–390. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  28. 28.
    Werbos, P.: Backpropagation through time: what it does and how to do it. Proceedings IEEE 74(10), 1550–1560 (1990)CrossRefGoogle Scholar
  29. 29.
    Williams, R.: Some observations on the use of the extended Kalman Filter as a recurrent network learning algorithm. Technical Report NU-CCS-92-1. Northeastern University, Boston, MA (1992)Google Scholar
  30. 30.
    Haykin, S.: Neural Networks, 2nd edn. Prentice Hall, Upper Saddle River (1999)zbMATHGoogle Scholar
  31. 31.
    Alanis, A., Sanchez, E., Loukianov, A.: Discrete-time adaptive backstepping nonlinear control via high-order neural networks. IEEE Transactions on Neural Networks 18(4), 1185–1195 (2007)CrossRefGoogle Scholar
  32. 32.
    Prokhorov, D.: Toyota prius hev neurocontrol and diagnostics. Neural Networks 21, 458–465 (2008)CrossRefGoogle Scholar
  33. 33.
    Ralaivola, L., d’Alché-Buc, F.: Nonlinear Time Series Filtering, Smoothing and Learning using the Kernel Kalman Filter. Technical Report. Universite Pierre et Marie Curie, Paris France (2004)Google Scholar
  34. 34.
    García-Pedrero, A.: Arquitectura neuronal apoyada en señales reconstruidas con wavelets para predicción de series de tiempo caóticas, M. Sc. Thesis (in spanish), INAOE, Tonantzintla, Puebla (2009)Google Scholar
  35. 35.
    Doka, K.: Handbook of brain theory and neural networks, 2nd edn. MIT Press, Cambridge (2002)Google Scholar
  36. 36.
    Cernansky, M.: Matlab functions for training recurrent neural networks RTRL-EKF (2008), (accessed January 2009)
  37. 37.
    Gomez-Gil, P., Garcia-Pedrero, A., Ramirez-Cortes, J.M.: Composite Recurrent Neural Networks for Long-Term Prediction of Highly-Dynamic Time Series Supported by Wavelet Decomposition. In: Castillo, O., Kacprzyk, J., Pedrycz, W. (eds.) Soft Computing for Intelligent Control and Mobile Robotics. SCI, vol. 318, pp. 253–268. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  38. 38.
    Cernansky, M.: Matlab functions for training recurrent neural networks RTRL-EKF (2009),
  39. 39.
    Keirn, Z.A., Aunon, J.I.: A new mode of communication between man and his surroundings. IEEE Transactions in Biomedical Engineering 37(12), 1209–1214 (1990)CrossRefGoogle Scholar
  40. 40.
    Cawley, G.C.: Leave-One-Out Cross-Validation Based Model Selection Criteria for Weighted LS-SVMs. In: Proceedings of the International Joint Conference on Neural Networks, Vancouver, Canada, pp. 1661–1668 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Emmanuel Morales-Flores
    • 1
  • Juan Manuel Ramírez-Cortés
    • 1
  • Pilar Gómez-Gil
    • 2
  • Vicente Alarcón-Aquino
    • 3
  1. 1.Department of ElectronicsInstituto Nacional de Astrofísica, Óptica y ElectrónicaTonantzintlaMexico
  2. 2.Department of Computer ScienceInstituto Nacional de Astrofísica, Óptica y ElectrónicaTonantzintlaMexico
  3. 3.Department of ElectronicsUniversity of the AmericasCholulaMexico

Personalised recommendations