Advertisement

Long-Term Stability of the SIRGAS Reference Frame and Episodic Station Movements Caused by the Seismic Activity in the SIRGAS Region

  • L. SánchezEmail author
  • W. Seemüller
  • H. Drewes
  • L. Mateo
  • G. González
  • A. da Silva
  • J. Pampillón
  • W. Martínez
  • V. Cioce
  • D. Cisneros
  • S. Cimbaro
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 138)

Abstract

The western part of the SIRGAS region is an extremely active seismic area because it is located in the plate boundary zone of six tectonic plates, namely the Pacific, Cocos, Nazca, North American, Caribbean, and South American plates. The frequent occurrence of earthquakes causes episodic station movements, which affect the long-term stability of the SIRGAS reference frame. Normally, these episodic events are taken into account in the frame realisation by introducing new position and, optionally, velocity parameters for the affected stations. However, this is not enough to guarantee the high precision required in a reference frame such as SIRGAS. Additional analyses about the post-seismic behaviour of the reference stations are necessary to allow the precise transformation between pre-seismic and post-seismic (deformed) frames. According to this, the paper presents an evaluation of the long-term stability of the SIRGAS reference frame including the comparison of the different SIRGAS realisations and the analysis of station displacements caused by earthquakes in the SIRGAS region. Special care is given to the events happened in Arequipa (on 2001-06-23, M=8.4) and Chile (on 2010-02-27, M=8.8). The analysis is based on the SIRGAS Continuously Operating Network (SIRGAS-CON). Beside analysing the station position time series and estimating the displacement vectors of the SIRGAS reference stations, some recommendations to mitigate the impact of this kind of events in the use of SIRGAS as a reference frame are formulated.

Keywords

SIRGAS reference frame Reference frame deformation Pre- and post-seismic frame realisation Arequipa earthquake Chile earthquake 

References

  1. Brunini C, Sánchez L, Drewes H, Costa S, Mackern V, MartÚnez W, Seemüller W, and da Silva A (2012) Improved analysis strategy and accessibility of the SIRGAS reference frame. In: Pacino C et al. (eds) IAG scientific assembly “Geodesy for Planet Earth”. IAG symposia, vol 136, Springer, Berlin, Heidelberg, pp 3–8Google Scholar
  2. Dach R, Hugentobler U, Fridez P, Meindl M (eds) (2007) Bernese GPS software version 5.0 – Documentation. Astronomical Institute, University of Berne, p 640Google Scholar
  3. Dow JM, Neilan RE, Rizos C (2009) The international GNSS service in a hanging landscape of global navigation satellite systems. J Geodesy 83:191–198. doi: 10.1007/s00190-008-0300-3 CrossRefGoogle Scholar
  4. Drewes H, Kaniuth K, Voelksen C, Costa S, Fortes LP (2005) Results of the SIRGAS campaign 2000 and coordinates variations with respect to the 1995 South American geocentric reference frame. In: Sanso F (ed) A window on the future of geodesy. IAG symposia, vol 128, Springer, Berlin, Heidelberg, pp 32–37Google Scholar
  5. Kaniuth K, Müller H, Seemüller W (2002) Displacement of the space geodetic observatory Arequipa due to recent earthquakes. Z Vermessungswesen 127:238–243Google Scholar
  6. Kouba J (2009) A guide to using international GNSS service products. Available at http://igscb.jpl.nasa.gov/igscb/resource/pubs/UsingIGSProductsVer21.pdf
  7. Letellier T (2004) Etude des ondes de marée sur les plateux continentaux. Thèse doctorale, Université de Toulouse III, Ecole Doctorale des Sciences de l’Univers, de l’Environnement et de l’Espace, p 237Google Scholar
  8. Niell AE (1996) Global mapping functions for the atmosphere delay at radio wavelength. J Geophys Res 101:3227–3246CrossRefGoogle Scholar
  9. Petit G, Luzum B (eds) (2010) IERS conventions 2010. IERS technical note 36, Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt, AMGoogle Scholar
  10. Saastamoinen J (1973) Contribution to the theory of atmospheric refraction. Part II: refraction corrections in satellite geodesy. Bull Géod 107:13–34CrossRefGoogle Scholar
  11. Sánchez L, Seemüller W, Seitz M (2012) Combination of the weekly solutions delivered by the SIRGAS processing centres for the SIRGAS-CON reference frame. In: Pacino C et al. (eds) IAG scientific assembly “Geodesy for planet earth”. IAG symposia, vol 136, Springer, Berlin, Heidelberg, pp 651–656Google Scholar
  12. Seemüller W, Krügel M, Sánchez L, Drewes H (2008) The position and velocity solution DGF08P01 of the IGS regional network associate analysis centre for SIRGAS (IGS RNAAC SIR). DGFI report no. 79. DGFI, Munich. Available at www.sirgas.org
  13. Seemüller W (2009) The position and velocity solution DGF06P01 for SIRGAS. In: Drewes H (ed) Geodetic reference frames. IAG symposia, vol 134, Springer, Berlin, Heidelberg, pp 167–172Google Scholar
  14. Seemüller W, Sánchez L, Seitz M, Drewes H (2010) The position and velocity solution SIR10P01 of the IGS regional network associate analysis centre for SIRGAS (IGS RNAAC SIR). DGFI report no. 86, Munich, p 120. Available at www.sirgas.org
  15. SIRGAS (1997) SIRGAS final report, working sroups I and II IBGE, Rio de Janeiro, p 96. Available at www.sirgas.org

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • L. Sánchez
    • 1
    Email author
  • W. Seemüller
    • 1
  • H. Drewes
    • 1
  • L. Mateo
    • 2
  • G. González
    • 3
  • A. da Silva
    • 4
  • J. Pampillón
    • 5
  • W. Martínez
    • 6
  • V. Cioce
    • 7
  • D. Cisneros
    • 8
  • S. Cimbaro
    • 9
  1. 1.Deutsches Geodätisches Forschungsinstitut (DGFI)MünchenGermany
  2. 2.Instituto Argentino de NivologíaGlaciología y Ciencias Ambientales – CONICETMendozaArgentina
  3. 3.Instituto Nacional de Estadística y Geografía (INEGI)AguascalientesMexico
  4. 4.Instituto Brasileiro de Geografia e Estatistica (IBGE)Rio de JaneiroBrazil
  5. 5.Servicio Geográfico Militar (SGM)MontevideoUruguay
  6. 6.Instituto Geográfico Agustín Codazzi (IGAC)BogotaColombia
  7. 7.Laboratorio de Geodesia Física y SatelitalUniversidad del ZuliaMaracaiboVenezuela
  8. 8.Instituto Geográfico Militar (IGM)QuitoEcuador
  9. 9.Instituto Geográfico Nacional (IGN)Buenos AiresArgentina

Personalised recommendations