ESPResSo 3.1: Molecular Dynamics Software for Coarse-Grained Models

  • Axel Arnold
  • Olaf Lenz
  • Stefan Kesselheim
  • Rudolf Weeber
  • Florian Fahrenberger
  • Dominic Roehm
  • Peter Košovan
  • Christian Holm
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 89)

Abstract

ESPResSo is a package for Molecular Dynamics (MD) simulations of coarse-grained models. We present the most recent version 3.1 of our software, highlighting some recent algorithmic extensions to version 1.0 presented in a previous paper (Limbach et al. Comput Phys Commun 174:704–727, 2006). A major strength of our package is the multitude of implemented methods for calculating Coulomb and dipolar interactions in periodic and partially periodic geometries. Here we present some more recent additions which include methods for systems with dielectric contrasts that frequently occur in coarse-grained models of charged systems with implicit water models, and an alternative, completely local electrostatic solver that is based on the electrodynamic equations. We also describe our approach to rigid body dynamics that uses MD particles with fixed relative positions. ESPResSo now gained the ability to add bonds during the integration, which allows to study e.g. agglomeration. For hydrodynamic interactions, a thermalized lattice Boltzmann solver has been built into ESPResSo, which can be coupled to the MD particles. This computationally expensive algorithm can be greatly accelerated by using Graphics Processing Units. For the analysis of time series spanning many orders of magnitude in time scales, we implemented a hierarchical generic correlation algorithm for user-configurable observables.

Keywords

Molecular dynamics Coarse-graining Lattice-Boltzmann 

References

  1. 1.
    R. Adhikari, K. Stratford, M.E. Cates, A.J. Wagner, Fluctuating Lattice Boltzmann. Europhys. Lett. 71, 473 (2005)CrossRefGoogle Scholar
  2. 2.
    P. Ahlrichs, B. Dünweg, Simulation of a single polymer chain in solution by combining lattice boltzmann and molecular dynamics. J. Chem. Phys. 111, 8225–8239 (1999)CrossRefGoogle Scholar
  3. 3.
    A. Arnold, C. Holm, MMM2D: a fast and accurate summation method for electrostatic interactions in 2d slab geometries. Comput. Phys. Commun. 148, 327–348 (2002)CrossRefGoogle Scholar
  4. 4.
    A. Arnold, C. Holm, Efficient methods to compute long range interactions for soft matter systems, in Advanced Computer Simulation Approaches for Soft Matter Sciences II, ed. by C. Holm, K. Kremer. Advances in Polymer Sciences, vol. II (Springer, Berlin, 2005), pp. 59–109Google Scholar
  5. 5.
    A. Arnold, J. de Joannis, C. Holm, Electrostatics in periodic slab geometries I. J. Chem. Phys. 117, 2496–2502 (2002)CrossRefGoogle Scholar
  6. 6.
    A. Arnold, B.A. Mann, H. Limbach, C. Holm, ESPResSo – An Extensible Simulation Package for Research on Soft Matter Systems, ed. by K. Kremer, V. Macho. Forschung und wissenschaftliches Rechnen 2003, GWDG-Bericht, vol. 63 (Gesellschaft für wissenschaftliche Datenverarbeitung mbh, Göttingen, 2004), pp. 43–59Google Scholar
  7. 7.
    R. Benzi, S. Succi, M. Vergassola, The lattice Boltzmann equation: Theory and applications. Phys. Rep. 222, 145–197 (1992)CrossRefGoogle Scholar
  8. 8.
    D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, S.B. Sinnott, A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Matter 14, 783 (2002)CrossRefGoogle Scholar
  9. 9.
    J.J. Cerdà, V. Ballenegger, O. Lenz, C. Holm, P3M algorithm for dipolar interactions. J. Chem. Phys. 129, 234104 (2008)CrossRefGoogle Scholar
  10. 10.
    M. Deserno, C. Holm, How to mesh up Ewald sums I: a theoretical and numerical comparison of various particle mesh routines. J. Chem. Phys. 109, 7678 (1998)CrossRefGoogle Scholar
  11. 11.
    M. Deserno, C. Holm, How to mesh up Ewald sums II: an accurate error estimate for the Particle-Particle-Particle-Mesh algorithm. J. Chem. Phys. 109, 7694 (1998)CrossRefGoogle Scholar
  12. 12.
    M. Deserno, C. Holm, S. May, The fraction of condensed counterions around a charged rod: comparison of Poisson-Boltzmann theory and computer simulations. Macromolecules 33, 199–206 (2000)CrossRefGoogle Scholar
  13. 13.
    B. Dünweg, A.J.C. Ladd, Lattice Boltzmann simulations of soft matter systems, in Advanced Computer Simulation Approaches for Soft Matter Sciences III, ed. by C. Holm, K. Kremer. Advances in Polymer Science, vol. 221 (Springer, Berlin, 2009), pp. 89–166Google Scholar
  14. 14.
    P. Español, P. Warren, Statistical mechanics of dissipative particle dynamics. Europhys. Lett. 30, 191 (1995)CrossRefGoogle Scholar
  15. 15.
    D. Frenkel, B. Smit, Understanding Molecular Simulation, 2nd edn. (Academic, San Diego, 2002)Google Scholar
  16. 16.
    J.G. Gay, B.J. Berne, Modification of the overlap potential to mimic a linear site-site potential. J. Chem. Phys. 74, 3316–3319 (1981)CrossRefGoogle Scholar
  17. 17.
    M. Griebel, J. Hamaekers, F. Heber, A molecular dynamics study on the impact of defects and functionalization on the young modulus of boron-nitride nanotubes. Comput. Mater. Sci. 45, 1097–1103 (2009)CrossRefGoogle Scholar
  18. 18.
    B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008)CrossRefGoogle Scholar
  19. 19.
    P.J. Hoogerbrugge, J.M.V.A. Koelman, Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett. 19, 155–160 (1992)CrossRefGoogle Scholar
  20. 20.
    W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)CrossRefGoogle Scholar
  21. 21.
    J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1999)MATHGoogle Scholar
  22. 22.
    C. Junghans, S. Poblete, A reference implementation of the adaptive resolution scheme in ESPResSo. Comput. Phys. Commun. 181, 1449–1454 (2010)MATHCrossRefGoogle Scholar
  23. 23.
    S. Kesselheim, M. Sega, C. Holm, Applying ICC to DNA translocation: effect of dielectric boundaries. Comput. Phys. Commun. 182, 33–35 (2011)MATHCrossRefGoogle Scholar
  24. 24.
    A. Kolb, B. Dünweg, Optimized constant pressure stochastic dynamics. J. Chem. Phys. 111, 4453–4459 (1999)CrossRefGoogle Scholar
  25. 25.
    P. Lallemand, D. d’Humieres, L.S. Luo, R. Rubinstein, Theory of the lattice Boltzmann method: three-dimensional model for linear viscoelastic fluids. Phys. Rev. E 67, 021203 (2003)Google Scholar
  26. 26.
    H.J. Limbach, A. Arnold, B.A. Mann, C. Holm, ESPResSo – an extensible simulation package for research on soft matter systems. Comput. Phys. Commun. 174, 704–727 (2006)CrossRefGoogle Scholar
  27. 27.
    V. Lobaskin, B. Dünweg, A new model for simulating colloidal dynamics. New J. Phys. 6, 54 (2004)CrossRefGoogle Scholar
  28. 28.
    A.C. Maggs, V. Rosseto, Local simulation algorithms for Coulombic interactions. Phys. Rev. Lett. 88, 196402 (2002)CrossRefGoogle Scholar
  29. 29.
    A. Malevanets, R. Kapral, Continuous-velocity lattice-gas model for fluid flow. Europhys. Lett. 44, 552 (1998)CrossRefGoogle Scholar
  30. 30.
    N.S. Martys, R.D. Mountain, Velocity verlet algorithm for dissipative-particle-dynamics-based models of suspensions. Phys. Rev. E 59, 3733–3736 (1999)CrossRefGoogle Scholar
  31. 31.
    R. Messina, Effect of image forces on polyelectrolyte adsorption at a charged surface. Phys. Rev. E 70, 051802 (2004)MathSciNetCrossRefGoogle Scholar
  32. 32.
    MPI Forum, MPI: A Message-Passing Interface (MPI) Standard Version 1.3 (2008)Google Scholar
  33. 33.
    NVIDIA Corporation, NVIDIA CUDA reference manual version 3.2 (2010)Google Scholar
  34. 34.
    I. Pasichnyk, B. Dünweg, Coulomb interactions via local dynamics: a molecular-dynamics algorithm. J. Phys. Condens. Matter 16, 3999–4020 (2004)CrossRefGoogle Scholar
  35. 35.
    J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel, L. Kalé, K. Schulten, Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005)CrossRefGoogle Scholar
  36. 36.
    J. Ramirez, S.K. Sukumaran, B. Vorselaars, A.E. Likhtman, Efficient on the fly calculation of time correlation functions in computer simulations. J. Chem. Phys. 133, 154103 (2010)CrossRefGoogle Scholar
  37. 37.
    K. Schätzel, M. Drewel, S. Stimac, Photon-correlation measurements at large lag times – improving statistical accuracy. J. Mod. Opt. 35, 711–718 (1988)CrossRefGoogle Scholar
  38. 38.
    U.D. Schiller, Thermal fluctuations and boundary conditions in the lattice Boltzmann method. Ph.D. thesis, Johannes Gutenberg-Universität Mainz, Fachbereich 08: Physik, Mathematik und Informatik (2008)Google Scholar
  39. 39.
    E.R. Smith, Electrostatic potentials for thin layers. Mol. Phys. 65, 1089–1104 (1988)CrossRefGoogle Scholar
  40. 40.
    T. Soddemann, B. Dünweg, K. Kremer, Dissipative particle dynamics: a useful thermostat for equilibrium and nonequilibrium molecular dynamics simulations. Phys. Rev. E 68, 46702 (2003)CrossRefGoogle Scholar
  41. 41.
    S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford University Press, New York, 2001)MATHGoogle Scholar
  42. 42.
    S. Tyagi, A. Arnold, C. Holm, ICMMM2D: an accurate method to include planar dielectric interfaces via image charge summation. J. Chem. Phys. 127, 154723 (2007)CrossRefGoogle Scholar
  43. 43.
    S. Tyagi, A. Arnold, C. Holm, Electrostatic layer correction with image charges: a linear scaling method to treat slab 2d + h systems with dielectric interfaces. J. Chem. Phys. 129, 204102 (2008)CrossRefGoogle Scholar
  44. 44.
    C. Tyagi, M. Süzen, M. Sega, M. Barbosa, S. Kantorovich, C. Holm, An iterative, fast, linear-scaling method for computing induced charges on arbitrary dielectric boundaries. J. Chem. Phys. 132, 154112 (2010)CrossRefGoogle Scholar
  45. 45.
    O.B. Usta, A.J.C. Ladd, J.E. Butler, Lattice-Boltzmann simulations of the dynamics of polymer solutions in periodic and confined geometries. J. Chem. Phys. 122, 094902 (2005)CrossRefGoogle Scholar
  46. 46.
    D.A. Wolf-Gladrow, Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction, vol. 1725 (Springer, New York, 2000)MATHCrossRefGoogle Scholar
  47. 47.
    D.P. Ziegler, Boundary conditions for lattice Boltzmann simulations. J. Stat. Phys. 71, 1171–1177 (1993)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Axel Arnold
    • 1
  • Olaf Lenz
    • 1
  • Stefan Kesselheim
    • 1
  • Rudolf Weeber
    • 1
  • Florian Fahrenberger
    • 1
  • Dominic Roehm
    • 1
  • Peter Košovan
    • 1
  • Christian Holm
    • 1
  1. 1.Institute for Computational PhysicsUniversität StuttgartStuttgartGermany

Personalised recommendations