Inversion Modulo Zero-Dimensional Regular Chains

  • Marc Moreno Maza
  • Éric Schost
  • Paul Vrbik
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7442)


We consider the questions of inversion modulo a regular chain in dimension zero and of matrix inversion modulo such a regular chain. We show that a well-known idea, Leverrier’s algorithm, yields new results for these questions.


Algebraic Extension Inverse Computation Dimension Zero Regular Chain Giant Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdeljaoued, J., Lombardi, H.: Méthodes matricielles: introduction à la complexité algébrique. Mathématiques & Applications, vol. 42. Springer (2004)Google Scholar
  2. 2.
    Bostan, A., Flajolet, P., Salvy, B., Schost, É.: Fast computation of special resultants. J. Symb. Comp. 41(1), 1–29 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Brent, R.P., Kung, H.T.: Fast algorithms for manipulating formal power series. Journal of the ACM 25(4), 581–595 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bürgisser, P., Clausen, M., Shokrollahi, A.: Algebraic Complexity Theory. Springer (1997)Google Scholar
  5. 5.
    Csanky, L.: Fast parallel matrix inversion algorithms. SIAM J. Comput. 5(4), 618–623 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Dahan, X., Jin, X., Moreno Maza, M., Schost, É.: Change of ordering for regular chains in positive dimension. Theoretical Computer Science 392(1-3), 37–65 (2008)Google Scholar
  7. 7.
    Dahan, X., Moreno Maza, M., Schost, É., Xie, Y.: On the complexity of the D5 principle. Transgressive Computing, 149–168 (2006)Google Scholar
  8. 8.
    Dahan, X., Moreno Maza, M., Schost, É., Wu, W., Xie, Y.: Lifting techniques for triangular decompositions. In: ISSAC 2005, pp. 108–115. ACM Press (2005)Google Scholar
  9. 9.
    Della Dora, J., Discrescenzo, C., Duval, D.: About a New Method for Computing in Algebraic Number Fields. In: Caviness, B.F. (ed.) EUROCAL 1985. LNCS, vol. 204, pp. 289–290. Springer, Heidelberg (1985)Google Scholar
  10. 10.
    Faddeev, D., Sominskii, I.: Collected problems in higher algebra. Freeman (1949)Google Scholar
  11. 11.
    von Zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University Press (1999)Google Scholar
  12. 12.
    Langemyr, L.: Algorithms for a multiple algebraic extension. In: Effective Methods in Algebraic Geometry. Progr. Math, vol. 94, pp. 235–248. Birkhäuser (1991)Google Scholar
  13. 13.
    Le Verrier, U.J.J.: Sur les variations séculaires des éléments elliptiques des sept planètes principales : Mercure, Venus, La Terre, Mars, Jupiter, Saturne et Uranus. J. Math. Pures Appli. 4, 220–254 (1840)Google Scholar
  14. 14.
    Lemaire, F., Moreno Maza, M., Xie, Y.: The RegularChains library. In: Kotsireas, I.S. (ed.) Maple Conference 2005, pp. 355–368 (2005)Google Scholar
  15. 15.
    Li, X., Moreno Maza, M., Schost, É.: Fast arithmetic for triangular sets: from theory to practice. Journal of Symbolic Computation 44(7), 891–907 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Li, X., Maza, M.M., Pan, W.: Computations modulo regular chains. In: ISSAC 2009, pp. 239–246. ACM Press (2009)Google Scholar
  17. 17.
    Li, X., Moreno Maza, M., Pan, W.: Gcd computations modulo regular chains. Technical report, Univ. Western Ontario, 30 pages (2009) (submitted)Google Scholar
  18. 18.
    Moreno Maza, M., Rioboo, R.: Polynomial GCD Computations over Towers of Algebraic Extensions. In: Giusti, M., Cohen, G., Mora, T. (eds.) AAECC 1995. LNCS, vol. 948, pp. 365–382. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  19. 19.
    Preparata, F.P., Sarwate, D.V.: An improved parallel processor bound in fast matrix inversion. Information Processing Letters 7(2), 148–150 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Schönhage, A.: The fundamental theorem of algebra in terms of computational complexity. Technical report, Univ. Tübingen, 73 pages (1982)Google Scholar
  21. 21.
    Shoup, V.: Fast construction of irreducible polynomials over finite fields. Journal of Symbolic Computation 17(5), 371–391 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Shoup, V.: Efficient computation of minimal polynomials in algebraic extensions of finite fields. In: ISSAC 1999, pp. 53–58. ACM Press (1999)Google Scholar
  23. 23.
    Souriau, J.-M.: Une méthode pour la décomposition spectrale et l’inversion des matrices. Comptes rendus des Séances de l’Académie des Sciences 227, 1010–1011 (1948)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Vassilevska Williams, V.: Breaking the Coppersmith-Winograd barrier (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marc Moreno Maza
    • 1
  • Éric Schost
    • 1
  • Paul Vrbik
    • 1
  1. 1.Department of Computer ScienceWestern UniversityCanada

Personalised recommendations