Inversion Modulo Zero-Dimensional Regular Chains

  • Marc Moreno Maza
  • Éric Schost
  • Paul Vrbik
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7442)


We consider the questions of inversion modulo a regular chain in dimension zero and of matrix inversion modulo such a regular chain. We show that a well-known idea, Leverrier’s algorithm, yields new results for these questions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdeljaoued, J., Lombardi, H.: Méthodes matricielles: introduction à la complexité algébrique. Mathématiques & Applications, vol. 42. Springer (2004)Google Scholar
  2. 2.
    Bostan, A., Flajolet, P., Salvy, B., Schost, É.: Fast computation of special resultants. J. Symb. Comp. 41(1), 1–29 (2006)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Brent, R.P., Kung, H.T.: Fast algorithms for manipulating formal power series. Journal of the ACM 25(4), 581–595 (1978)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bürgisser, P., Clausen, M., Shokrollahi, A.: Algebraic Complexity Theory. Springer (1997)Google Scholar
  5. 5.
    Csanky, L.: Fast parallel matrix inversion algorithms. SIAM J. Comput. 5(4), 618–623 (1976)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Dahan, X., Jin, X., Moreno Maza, M., Schost, É.: Change of ordering for regular chains in positive dimension. Theoretical Computer Science 392(1-3), 37–65 (2008)Google Scholar
  7. 7.
    Dahan, X., Moreno Maza, M., Schost, É., Xie, Y.: On the complexity of the D5 principle. Transgressive Computing, 149–168 (2006)Google Scholar
  8. 8.
    Dahan, X., Moreno Maza, M., Schost, É., Wu, W., Xie, Y.: Lifting techniques for triangular decompositions. In: ISSAC 2005, pp. 108–115. ACM Press (2005)Google Scholar
  9. 9.
    Della Dora, J., Discrescenzo, C., Duval, D.: About a New Method for Computing in Algebraic Number Fields. In: Caviness, B.F. (ed.) EUROCAL 1985. LNCS, vol. 204, pp. 289–290. Springer, Heidelberg (1985)Google Scholar
  10. 10.
    Faddeev, D., Sominskii, I.: Collected problems in higher algebra. Freeman (1949)Google Scholar
  11. 11.
    von Zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University Press (1999)Google Scholar
  12. 12.
    Langemyr, L.: Algorithms for a multiple algebraic extension. In: Effective Methods in Algebraic Geometry. Progr. Math, vol. 94, pp. 235–248. Birkhäuser (1991)Google Scholar
  13. 13.
    Le Verrier, U.J.J.: Sur les variations séculaires des éléments elliptiques des sept planètes principales : Mercure, Venus, La Terre, Mars, Jupiter, Saturne et Uranus. J. Math. Pures Appli. 4, 220–254 (1840)Google Scholar
  14. 14.
    Lemaire, F., Moreno Maza, M., Xie, Y.: The RegularChains library. In: Kotsireas, I.S. (ed.) Maple Conference 2005, pp. 355–368 (2005)Google Scholar
  15. 15.
    Li, X., Moreno Maza, M., Schost, É.: Fast arithmetic for triangular sets: from theory to practice. Journal of Symbolic Computation 44(7), 891–907 (2009)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Li, X., Maza, M.M., Pan, W.: Computations modulo regular chains. In: ISSAC 2009, pp. 239–246. ACM Press (2009)Google Scholar
  17. 17.
    Li, X., Moreno Maza, M., Pan, W.: Gcd computations modulo regular chains. Technical report, Univ. Western Ontario, 30 pages (2009) (submitted)Google Scholar
  18. 18.
    Moreno Maza, M., Rioboo, R.: Polynomial GCD Computations over Towers of Algebraic Extensions. In: Giusti, M., Cohen, G., Mora, T. (eds.) AAECC 1995. LNCS, vol. 948, pp. 365–382. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  19. 19.
    Preparata, F.P., Sarwate, D.V.: An improved parallel processor bound in fast matrix inversion. Information Processing Letters 7(2), 148–150 (1978)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Schönhage, A.: The fundamental theorem of algebra in terms of computational complexity. Technical report, Univ. Tübingen, 73 pages (1982)Google Scholar
  21. 21.
    Shoup, V.: Fast construction of irreducible polynomials over finite fields. Journal of Symbolic Computation 17(5), 371–391 (1994)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Shoup, V.: Efficient computation of minimal polynomials in algebraic extensions of finite fields. In: ISSAC 1999, pp. 53–58. ACM Press (1999)Google Scholar
  23. 23.
    Souriau, J.-M.: Une méthode pour la décomposition spectrale et l’inversion des matrices. Comptes rendus des Séances de l’Académie des Sciences 227, 1010–1011 (1948)MathSciNetMATHGoogle Scholar
  24. 24.
    Vassilevska Williams, V.: Breaking the Coppersmith-Winograd barrier (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marc Moreno Maza
    • 1
  • Éric Schost
    • 1
  • Paul Vrbik
    • 1
  1. 1.Department of Computer ScienceWestern UniversityCanada

Personalised recommendations