On Fulton’s Algorithm for Computing Intersection Multiplicities

  • Steffen Marcus
  • Marc Moreno Maza
  • Paul Vrbik
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7442)

Abstract

As pointed out by Fulton in his Intersection Theory, the intersection multiplicities of two plane curves V(f) and V(g) satisfy a series of 7 properties which uniquely define I(p;f,g) at each point p ∈ V(f,g). Moreover, the proof of this remarkable fact is constructive, which leads to an algorithm, that we call Fulton’s Algorithm. This construction, however, does not generalize to n polynomials f1, …, fn. Another practical limitation, when targeting a computer implementation, is the fact that the coordinates of the point p must be in the field of the coefficients of f1, …, fn. In this paper, we adapt Fulton’s Algorithm such that it can work at any point of V(f,g), rational or not. In addition, we propose algorithmic criteria for reducing the case of n variables to the bivariate one. Experimental results are also reported.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aubry, P., Lazard, D., Moreno Maza, M.: On the theories of triangular sets. J. Symb. Comp. 28(1-2), 105–124 (1999)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Berberich, E., Emeliyanenko, P., Sagraloff, M.: An elimination method for solving bivariate polynomial systems: Eliminating the usual drawbacks. CoRR, abs/1010.1386 (2010)Google Scholar
  3. 3.
    Bini, D., Mourrain, B.: Polynomial test suite, http://www-sop.inria.fr/saga/POL/ (accessed: April 1, 2012)
  4. 4.
    Chen, C., Moreno Maza, M.: Algorithms for computing triangular decompositions of polynomial systems. In: Proc. ISSAC 2011, pp. 83–90. ACM (2011)Google Scholar
  5. 5.
    Cheng, J.-S., Gao, X.-S.: Multiplicity preserving triangular set decomposition of two polynomials. CoRR, abs/1101.3603 (2011)Google Scholar
  6. 6.
    Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. Graduate Text in Mathematics, vol. 185. Springer, New York (1998)MATHCrossRefGoogle Scholar
  7. 7.
    Dayton, B.H., Zeng, Z.: Computing the multiplicity structure in solving polynomial systems. In: Proceedings of ISSAC 2005, pp. 116–123. ACM (2005)Google Scholar
  8. 8.
    Fulton, W.: Introduction to intersection theory in algebraic geometry. CBMS Regional Conference Series in Mathematics, vol. 54. Conference Board of the Mathematical Sciences, Washington, DC (1984)Google Scholar
  9. 9.
    Fulton, W.: Algebraic curves. Advanced Book Classics. Addison-Wesley (1989)Google Scholar
  10. 10.
    Kalkbrener, M.: A generalized euclidean algorithm for computing triangular representations of algebraic varieties. J. Symb. Comp. 15, 143–167 (1993)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Kirwan, F.: Complex algebraic curves. London Mathematical Society Student Texts, vol. 23. Cambridge University Press, Cambridge (1992)MATHCrossRefGoogle Scholar
  12. 12.
    Knapp, A.W.: Cornerstones. In: Advanced algebra. Birkhäuser Boston Inc., Boston (2007), Along with a companion volume ıt Basic algebraGoogle Scholar
  13. 13.
    Labs, O.: A list of challenges for real algebraic plane curve visualization software. In: Emiris, I.Z., Sottile, F., Theobald, T. (eds.) Nonlinear Computational Geometry, pp. 137–164. Springer, New York (2010)Google Scholar
  14. 14.
    Lazard, D.: Solving zero-dimensional algebraic systems. J. Symb. Comp. 15, 117–132 (1992)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lemaire, F., Moreno Maza, M., Pan, W., Xie, Y.: When does (T) equal Sat(T)? In: Proc. ISSAC 2008, pp. 207–214. ACM Press (2008)Google Scholar
  16. 16.
    Lemaire, F., Moreno Maza, M., Xie, Y.: The RegularChains library. In: Ilias, S. (ed.) Maple Conference 2005, pp. 355–368 (2005)Google Scholar
  17. 17.
    Li, Y.L., Xia, B., Zhang, Z.: Zero decomposition with multiplicity of zero-dimensional polynomial systems. CoRR, abs/1011.1634 (2010)Google Scholar
  18. 18.
    Shafarevich, I.R.: Basic algebraic geometry 1, 2nd edn. Springer, Berlin (1994)MATHCrossRefGoogle Scholar
  19. 19.
    Wang, D.M.: Elimination Methods. Springer (2000)Google Scholar
  20. 20.
    Wu, W.T.: A zero structure theorem for polynomial equations solving. MM Research Preprints 1, 2–12 (1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Steffen Marcus
    • 1
  • Marc Moreno Maza
    • 2
  • Paul Vrbik
    • 2
  1. 1.Department of MathematicsUniversity of UtahUSA
  2. 2.Department of Computer ScienceUniversity of Western OntarioCanada

Personalised recommendations