Evolving Femtocell Algorithms with Dynamic and Stationary Training Scenarios

  • Erik Hemberg
  • Lester Ho
  • Michael O’Neill
  • Holger Claussen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7492)


We analyse the impact of dynamic training scenarios when evolving algorithms for femtocells, which are low power, low-cost, user-deployed cellular base stations. Performance is benchmarked against an alternative stationary training strategy where all scenarios are presented to each individual in the evolving population during each fitness evaluation. In the dynamic setup, different training scenarios are gradually exposed to the population over successive generations. The results show that the solutions evolved using the stationary training scenarios have the best out-of-sample performance. Moreover, the use of a grammar which produces discrete changes to the pilot power generate better solutions on the training and out-of-sample scenarios.


Genetic Programming Tabu List Grammatical Evolution Training Scenario Macrocell User 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alba, E., Chicano, J.F.: Evolutionary algorithms in telecommunications. In: MELECON 2006, pp. 795–798. IEEE (2006)Google Scholar
  2. 2.
    Bersano-Begey, T.F., Daida, J.M.: A discussion on generality and robustness and a framework for fitness set construction in genetic programming to promote robustness. In: Genetic Programming Conference, pp. 11–18 (1997)Google Scholar
  3. 3.
    Breiman, L.: Bagging predictors. Machine Learning 24(2), 23–140 (1996)MathSciNetGoogle Scholar
  4. 4.
    Byrne, J., O’Neill, M., McDermott, J., Brabazon, A.: An Analysis of the Behaviour of Mutation in Grammatical Evolution. In: Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş. (eds.) EuroGP 2010. LNCS, vol. 6021, pp. 14–25. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE TEC 6(2), 182–197 (2002)Google Scholar
  6. 6.
    Dempsey, I., O’Neill, M., Brabazon, A.: Foundations in Grammatical Evolution for Dynamic Environments. Springer (April 2009)Google Scholar
  7. 7.
    Efron, B.: Bootstrap methods: another look at the jackknife. The Annals of Statistics 7(1), 1–26 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Fagen, D., Vicharelli, P.A., Weitzen, J.: Automated wireless coverage optimization with controlled overlap. IEEE Transactions on Vehicular Technology 57(4), 2395–2403 (2008)CrossRefGoogle Scholar
  9. 9.
    Freund, Y., Schapire, R.: A Desicion-Theoretic Generalization of On-line Learning and an Application to Boosting. In: Vitányi, P. (ed.) EuroCOLT 1995. LNCS, vol. 904, pp. 23–37. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  10. 10.
    Harper, R.: Ge, explosive grammars and the lasting legacy of bad initialisation. In: WCCI 2010 (July 2010)Google Scholar
  11. 11.
    Hemberg, E., Ho, L., O’Neill, M., Claussen, H.: A symbolic regression approach to manage femtocell coverage using grammatical genetic programming. In: GECCO, pp. 639–646. ACM (2011)Google Scholar
  12. 12.
    Ho, L., Ashraf, I., Claussen, H.: Evolving femtocell coverage optimization algorithms using genetic programming. In: 2009 IEEE Personal, Indoor and Mobile Radio Communications, pp. 2132–2136. IEEE (2010)Google Scholar
  13. 13.
    Jain, R., Chiu, D.M., Hawe, W.R.: A quantitative measure of fairness and discrimination for resource allocation in shared computer system. Eastern Research Laboratory, Digital Equipment Corp. (1984)Google Scholar
  14. 14.
    Mckay, R.I., Hoai, N.X., Whigham, P.A., Shan, Y., O’Neill, M.: Grammar-based Genetic Programming: a survey. Genetic Programming and Evolvable Machines 11(3), 365–396 (2010)CrossRefGoogle Scholar
  15. 15.
    O’Neill, M., Nicolau, M., Brabazon, A.: Dynamic environments can speed up evolution with genetic programming. In: GECCO, pp. 191–192. ACM (2011)Google Scholar
  16. 16.
    Siomina, I., Varbrand, P.: Automated optimization of service coverage and base station antenna configuration in umts networks. IEEE Wireless Communications 13(6), 16–25 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Erik Hemberg
    • 1
  • Lester Ho
    • 2
  • Michael O’Neill
    • 1
  • Holger Claussen
    • 2
  1. 1.Natural Computing Research & Applications Group, Complex & Adaptive Systems Laboratory, School of Computer Science & InformaticsUniversity College DublinIreland
  2. 2.Bell LaboratoriesAlcatel-LucentDublinIreland

Personalised recommendations