A Comparative Study of Three GPU-Based Metaheuristics

  • Youssef S. G. Nashed
  • Pablo Mesejo
  • Roberto Ugolotti
  • Jérémie Dubois-Lacoste
  • Stefano Cagnoni
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7492)

Abstract

In this paper we compare GPU-based implementations of three metaheuristics: Particle Swarm Optimization, Differential Evolution, and Scatter Search. A GPU-based implementation, obviously, does not change the general properties of the algorithms. As well, we give for granted that GPU-based implementation of both algorithm and fitness function produces a significant speed-up with respect to a sequential implementation. Accordingly, the main goal of this work has been to fairly assess the efficiency of the GPU-based implementations of the three metaheuristics, based on the statistical analysis of the results they obtain in optimizing a benchmark of twenty functions within a prefixed limited time.

Keywords

Global Continuous Optimization Particle Swarm Optimization Differential Evolution Scatter Search GPGPU 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford (1999)Google Scholar
  2. 2.
    Das, S., Suganthan, P.: Differential Evolution: A Survey of the State-of-the-Art. IEEE Transactions on Evolutionary Computation 15(1), 4–31 (2011)CrossRefGoogle Scholar
  3. 3.
    de Veronese, L., Krohling, R.: Swarm’s flight: Accelerating the particles using C-CUDA. In: Proc. IEEE Congress on Evolutionary Computation, pp. 3264–3270 (2009)Google Scholar
  4. 4.
    de Veronese, L., Krohling, R.: Differential evolution algorithm on the GPU with C-CUDA. In: Proc. IEEE Congress on Evolutionary Computation, pp. 1–7 (2010)Google Scholar
  5. 5.
    Duarte, A., Martí, R., Glover, F., Gortázar, F.: Hybrid scatter tabu search for unconstrained global optimization. Annals of Operations Research 183(1), 95–123 (2011)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer (2003)Google Scholar
  7. 7.
    Glover, F.: Heuristics for integer programming using surrogate constraints. Decision Sciences 8(1), 156–166 (1977)CrossRefGoogle Scholar
  8. 8.
    Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: Proc. IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)Google Scholar
  9. 9.
    Krömer, P., Snåšel, V., Platoš, J., Abraham, A.: Many-threaded implementation of differential evolution for the CUDA platform. In: Proc. 13th Annual Conference on Genetic and Evolutionary Computation, GECCO 2011, pp. 1595–1602. ACM (2011)Google Scholar
  10. 10.
    López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace package, iterated race for automatic algorithm configuration. Technical Report TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium (2011)Google Scholar
  11. 11.
    Mussi, L., Daolio, F., Cagnoni, S.: Evaluation of parallel particle swarm optimization algorithms within the CUDA architecture. Information Sciences 181(20), 4642–4657 (2011)CrossRefGoogle Scholar
  12. 12.
    Mussi, L., Nashed, Y.S.G., Cagnoni, S.: GPU-based asynchronous particle swarm optimization. In: Proc. 13th Annual Conference on Genetic and Evolutionary Computation, GECCO 2011, pp. 1555–1562. ACM (2011)Google Scholar
  13. 13.
    Nashed, Y.S.G., Ugolotti, R., Mesejo, P., Cagnoni, S.: libCudaOptimize: an Open Source Library of GPU-based Metaheuristics. In: Proc. Genetic and Evolutionary Computation Conference, GECCO 2012 (in press, 2012)Google Scholar
  14. 14.
    nVIDIA Corporation: nVIDIA CUDA Programming Guide v. 4.0. (2011)Google Scholar
  15. 15.
    Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intelligence 1(1), 33–57 (2007)CrossRefGoogle Scholar
  16. 16.
    Storn, R., Price, K.: Differential Evolution - a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical report, International Computer Science Institute (1995)Google Scholar
  17. 17.
    Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y., Auger, A., Tiwari, S.: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Natural Computing, 1–50 (2005)Google Scholar
  18. 18.
    Vesterstrom, J., Thomsen, R.: A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems. In: Proc. IEEE Congress on Evolutionary Computation, pp. 1980–1987 (2004)Google Scholar
  19. 19.
    Wets, F.J., Solis, R.J.: Minimization by random search techniques. Mathematics of Operations Research 6(1), 19–30 (1981)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Zhou, Y., Tan, Y.: GPU-based parallel particle swarm optimization. In: Proc. IEEE Congress on Evolutionary Computation, pp. 1493–1500 (2009)Google Scholar
  21. 21.
    Zhu, W.: Massively parallel differential evolution–pattern search optimization with graphics hardware acceleration: an investigation on bound constrained optimization problems. Journal of Global Optimization 50(3), 417–437 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Youssef S. G. Nashed
    • 1
  • Pablo Mesejo
    • 1
  • Roberto Ugolotti
    • 1
  • Jérémie Dubois-Lacoste
    • 2
  • Stefano Cagnoni
    • 1
  1. 1.Department of Information EngineeringUniversity of ParmaItaly
  2. 2.IRIDIA, CoDEUniversité Libre de BruxellesBelgium

Personalised recommendations