A Non-interactive Range Proof with Constant Communication

  • Rafik Chaabouni
  • Helger Lipmaa
  • Bingsheng Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7397)

Abstract

In a range proof, the prover convinces the verifier in zero-knowledge that he has encrypted or committed to a value a ∈ [0, H] where H is a public constant. Most of the previous non-interactive range proofs have been proven secure in the random oracle model. We show that one of the few previous non-interactive range proofs in the common reference string (CRS) model, proposed by Yuen et al. in COCOON 2009, is insecure. We then construct a secure non-interactive range proof that works in the CRS model. The new range proof can have (by different instantiations of the parameters) either very short communication (14 080 bits) and verifier’s computation (81 pairings), short combined CRS length and communication (log1 / 2 + o (1)H group elements), or very efficient prover’s computation (Θ(logH) exponentiations).

Keywords

NIZK pairings progression-free sets range proof 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barreto, P.S.L.M., Naehrig, M.: Pairing-Friendly Elliptic Curves of Prime Order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Camenisch, J., Chaabouni, R., Shelat, A.: Efficient Protocols for Set Membership and Range Proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 234–252. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Chaabouni, R., Lipmaa, H., Shelat, A.: Additive Combinatorics and Discrete Logarithm Based Range Protocols. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS, vol. 6168, pp. 336–351. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Di Crescenzo, G., Herranz, J., Sáez, G.: Reducing Server Trust in Private Proxy Auctions. In: Katsikas, S.K., López, J., Pernul, G. (eds.) TrustBus 2004. LNCS, vol. 3184, pp. 80–89. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Elkin, M.: An Improved Construction of Progression-Free Sets. Israeli Journal of Mathematics 184, 93–128 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Groth, J.: Honest Verifier Zero-Knowledge Arguments Applied. PhD thesis, University of Århus, Denmark (October 2004)Google Scholar
  8. 8.
    Groth, J.: Short Pairing-Based Non-interactive Zero-Knowledge Arguments. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Groth, J.: Efficient Zero-Knowledge Arguments from Two-Tiered Homomorphic Commitments. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 431–448. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Groth, J., Sahai, A.: Efficient Non-Interactive Proof Systems for Bilinear Groups. Technical Report 2007/155, International Association for Cryptologic Research (April 27, 2007), http://eprint.iacr.org/2007/155 (version 20100222:192509) (retrieved in December 2011)
  11. 11.
    Groth, J., Sahai, A.: Efficient Non-interactive Proof Systems for Bilinear Groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Hess, F., Smart, N.P., Vercauteren, F.: The Eta Pairing Revisited. IEEE Transactions on Information Theory 52(10), 4595–4602 (2006)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Lipmaa, H.: On Diophantine Complexity and Statistical Zero-Knowledge Arguments. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 398–415. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Lipmaa, H.: Progression-Free Sets and Sublinear Pairing-Based Non-Interactive Zero-Knowledge Arguments. Technical Report 2011/009, International Association for Cryptologic Research (January 5, 2011), http://eprint.iacr.org/2011/009
  15. 15.
    Lipmaa, H.: Progression-Free Sets and Sublinear Pairing-Based Non-Interactive Zero-Knowledge Arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–189. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Lipmaa, H., Asokan, N., Niemi, V.: Secure Vickrey Auctions without Threshold Trust. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 87–101. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Pereira Geovandro, C.C.F., Simplício Jr., M.A., Naehrig, M., Barreto, P.S.L.M.: A Family of Implementation-Friendly BN Elliptic Curves. Journal of Systems and Software 84(8), 1319–1326 (2011)CrossRefGoogle Scholar
  18. 18.
    Rial, A., Kohlweiss, M., Preneel, B.: Universally Composable Adaptive Priced Oblivious Transfer. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 231–247. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Sanders, T.: On Roth’s Theorem on Progressions. Annals of Mathematics 174(1), 619–636 (2011)Google Scholar
  20. 20.
    Tao, T., Vu, V.: Additive Combinatorics. Cambridge Studies in Advanced Mathematics. Cambridge University Press (2006)Google Scholar
  21. 21.
    Yuen, T.H., Huang, Q., Mu, Y., Susilo, W., Wong, D.S., Yang, G.: Efficient Non-interactive Range Proof. In: Ngo, H.Q. (ed.) COCOON 2009. LNCS, vol. 5609, pp. 138–147. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Rafik Chaabouni
    • 1
    • 2
  • Helger Lipmaa
    • 1
  • Bingsheng Zhang
    • 1
  1. 1.Institute of Computer ScienceUniversity of TartuEstonia
  2. 2.Security and Cryptography LaboratoryEPFLSwitzerland

Personalised recommendations