Advertisement

A Cure for Stuttering Parity Games

  • Sjoerd Cranen
  • Jeroen J. A. Keiren
  • Tim A. C. Willemse
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7521)

Abstract

We define governed stuttering bisimulation for parity games, weakening stuttering bisimulation by taking the ownership of vertices into account only when this might lead to observably different games. We show that governed stuttering bisimilarity is an equivalence for parity games and allows for a natural quotienting operation. Moreover, we prove that all pairs of vertices related by governed stuttering bisimilarity are won by the same player in the parity game. Thus, our equivalence can be used as a preprocessing step when solving parity games. Governed stuttering bisimilarity can be decided in \(\mathcal{O}(n^2m)\) time for parity games with n vertices and m edges. Our experiments indicate that governed stuttering bisimilarity is mostly competitive with stuttering equivalence on parity games encoding typical verification problems.

Keywords

Equivalence Relation Model Check Computation Tree Computation Path Minimal Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J. ACM 49(5), 672–713 (2002)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Arnold, A., Vincent, A., Walukiewicz, I.: Games for synthesis of controllers with partial observation. TCS 303(1), 7–34 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Badban, B., Fokkink, W., Groote, J.F., Pang, J., van de Pol, J.: Verification of a sliding window protocol in μCRL and PVS. FAC 17, 342–388 (2005)zbMATHGoogle Scholar
  4. 4.
    Berwanger, D., Dawar, A., Hunter, P., Kreutzer, S.: DAG-Width and Parity Games. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 524–536. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Blom, S.C.C., Orzan, S.: Distributed branching bisimulation reduction of state spaces. Electronic Notes in Theoretical Computer Science 89(1), 99–113 (2003)CrossRefGoogle Scholar
  6. 6.
    Blom, S., van de Pol, J.: State Space Reduction by Proving Confluence. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 596–694. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Browne, M.C., Clarke, E.M., Grumberg, O.: Characterizing finite Kripke structures in propositional temporal logic. TCS 59, 115–131 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Chen, T., Ploeger, B., van de Pol, J., Willemse, T.A.C.: Equivalence Checking for Infinite Systems Using Parameterized Boolean Equation Systems. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 120–135. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Cranen, S., Keiren, J.J.A., Willemse, T.A.C.: A cure for stuttering parity games. Technical Report 12-05, Eindhoven University of Technology, Eindhoven (2012), http://alexandria.tue.nl/repository/books/732149.pdf
  10. 10.
    Cranen, S., Keiren, J.J.A., Willemse, T.A.C.: Stuttering Mostly Speeds Up Solving Parity Games. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 207–221. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy. In: FOCS 1991, pp. 368–377. IEEE Computer Society, Washington, DC (1991)Google Scholar
  12. 12.
    Friedmann, O., Lange, M.: Solving Parity Games in Practice. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 182–196. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Fritz, C.: Simulation-Based Simplification of omega-Automata. PhD thesis, Christian-Albrechts-Universität zu Kiel (2005)Google Scholar
  14. 14.
    Fritz, C., Wilke, T.: Simulation Relations for Alternating Parity Automata and Parity Games. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 59–70. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Groote, J.F., Pang, J., Wouters, A.G.: Analysis of a distributed system for lifting trucks. In: JLAP, vol. 55, pp. 21–56. Elsevier (2003)Google Scholar
  16. 16.
    Groote, J.F., Vaandrager, F.W.: An Efficient Algorithm for Branching Bisimulation and Stuttering Equivalence. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp. 626–638. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  17. 17.
    Jurdziński, M.: Deciding the winner in parity games is in UP ∩ co-UP. IPL 68(3), 119–124 (1998)CrossRefGoogle Scholar
  18. 18.
    Jurdziński, M.: Small Progress Measures for Solving Parity Games. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  19. 19.
    Jurdziński, M., Paterson, M., Zwick, U.: A Deterministic Subexponential Algorithm for Solving Parity Games. In: SODA 2006, pp. 117–123. ACM/SIAM (2006)Google Scholar
  20. 20.
    Keiren, J.J.A., Willemse, T.A.C.: Bisimulation Minimisations for Boolean Equation Systems. In: Namjoshi, K., Zeller, A., Ziv, A. (eds.) HVC 2009. LNCS, vol. 6405, pp. 102–116. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Luttik, S.P.: Description and formal specification of the link layer of P1394. In: Workshop on Applied Formal Methods in System Design, pp. 43–56 (1997)Google Scholar
  22. 22.
    McNaughton, R.: Infinite games played on finite graphs. APAL 65(2), 149–184 (1993)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Obdrzálek, J.: Clique-Width and Parity Games. In: CSL, pp. 54–68 (2007)Google Scholar
  24. 24.
    Schewe, S.: Solving Parity Games in Big Steps. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 449–460. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Stirling, C.: Bisimulation, Model Checking and Other Games. In: Notes for Mathfit Workshop on Finite Model Theory, University of Wales Swansea (1996)Google Scholar
  26. 26.
    van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimulation semantics. J. ACM 43(3), 555–600 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on infinite trees. TCS 200(1-2), 135–183 (1998)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sjoerd Cranen
    • 1
  • Jeroen J. A. Keiren
    • 1
  • Tim A. C. Willemse
    • 1
  1. 1.Department of Computer Science and MathematicsEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations