Fluid Model Checking

  • Luca Bortolussi
  • Jane Hillston
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7454)


In this paper we investigate a potential use of fluid approximation techniques in the context of stochastic model checking of CSL formulae. We focus on properties describing the behaviour of a single agent in a (large) population of agents, exploiting a limit result known also as fast simulation. In particular, we will approximate the behaviour of a single agent with a time-inhomogeneous CTMC which depends on the environment and on the other agents only through the solution of the fluid differential equation. We will prove the asymptotic correctness of our approach in terms of satisfiability of CSL formulae and of reachability probabilities. We will also present a procedure to model check time-inhomogeneous CTMC against CSL formulae.


Stochastic model checking fluid approximation mean field approximation reachability probability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andreychenko, A., Crouzen, P., Wolf, V.: On-the-fly Uniformization of Time-Inhomogeneous Infinite Markov Population Models. In: Proceedings of QAPL 2011. ENTCS, vol. 57, pp. 1–15 (2011)Google Scholar
  2. 2.
    Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model Checking Continuous-Time Markov Chains by Transient Analysis. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 358–372. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Bakhshi, R., Cloth, L., Fokkink, W., Haverkort, B.R.: Mean-field analysis for the evaluation of gossip protocols. In: Proceedings of QEST 2009, pp. 247–256. IEEE Computer Society (2009)Google Scholar
  4. 4.
    Benaïm, M., Le Boudec, J.: A class of mean field interaction models for computer and communication systems. Performance Evaluation (2008)Google Scholar
  5. 5.
    Bobbio, A., Gribaudo, M., Telek, M.: Analysis of large scale interacting systems by mean field method. In: Proceedings of QEST 2008, pp. 215–224. IEEE Computer Society (2008)Google Scholar
  6. 6.
    Bortolussi, L., Hillston, J.: Fluid model checking. CoRR 1203.0920 (2012), http://arxiv.org/abs/1203.0920
  7. 7.
    Bortolussi, L., Policriti, A.: Dynamical systems and stochastic programming — from ordinary differential equations and back. Trans. Comp. Sys. Bio. XI (2009)Google Scholar
  8. 8.
    Chen, T., Diciolla, M., Kwiatkowska, M., Mereacre, A.: Time-Bounded Verification of CTMCs against Real-Time Specifications. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 26–42. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Chen, T., Han, T., Katoen, J.-P., Mereacre, A.: LTL Model Checking of Time-Inhomogeneous Markov Chains. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 104–119. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Darling, R.W.R.: Fluid limits of pure jump Markov processes: A practical guide (2002), http://arxiv.org/abs/math.PR/0210109
  11. 11.
    Darling, R.W.R., Norris, J.R.: Differential equation approximations for Markov chains. Probability Surveys 5 (2008)Google Scholar
  12. 12.
    Franek, P., Ratschan, S., Zgliczynski, P.: Satisfiability of Systems of Equations of Real Analytic Functions Is Quasi-decidable. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 315–326. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Gast, N., Gaujal, B.: A mean field model of work stealing in large-scale systems. In: Proceedings of ACM SIGMETRICS 2010, pp. 13–24 (2010)Google Scholar
  14. 14.
    Hayden, R.A., Bradley, J.T., Clark, A.: Performance Specification and Evaluation with Unified Stochastic Probes and Fluid Analysis. IEEE Trans. Soft. Eng.Google Scholar
  15. 15.
    Hayden, R.A., Stefanek, A., Bradley, J.T.: Fluid computation of passage-time distributions in large Markov models. Theor. Comput. Sci. 413(1), 106–141 (2012)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Hillston, J.: Fluid flow approximation of PEPA models. In: Proceedings of QEST 2005, pp. 33–42. IEEE Computer Society (2005)Google Scholar
  17. 17.
    Katoen, J.-P., Mereacre, A.: Model Checking HML on Piecewise-Constant Inhomogeneous Markov Chains. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 203–217. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Kattenbelt, M., Kwiatkowska, M.Z., Norman, G., Parker, D.: Game-based probabilistic predicate abstraction in PRISM. Electr. Notes Theor. Comput. Sci. 220(3), 5–21 (2008)CrossRefGoogle Scholar
  19. 19.
    Kattenbelt, M., Kwiatkowska, M., Norman, G., Parker, D.: Abstraction Refinement for Probabilistic Software. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp. 182–197. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Kolesnichenko, A., Remke, A., de Boer, P.-T., Haverkort, B.R.: Comparison of the Mean-Field Approach and Simulation in a Peer-to-Peer Botnet Case Study. In: Thomas, N. (ed.) EPEW 2011. LNCS, vol. 6977, pp. 133–147. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Krantz, S., Harold, P.R.: A Primer of Real Analytic Functions, 2nd edn. Birkhäuser (2002)Google Scholar
  22. 22.
    Kurtz, T.G.: Solutions of ordinary differential equations as limits of pure jump Markov processes. Journal of Applied Probability 7, 49–58 (1970)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model checking with PRISM: A hybrid approach. Int. Journal on Software Tools for Technology Transfer 6(2), 128–142 (2004)Google Scholar
  24. 24.
    Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model checking with PRISM: A hybrid approach. Int. Journal on Software Tools for Technology Transfer 6(2), 128–142 (2004)Google Scholar
  25. 25.
    Neumaier, A.: Interval Methods for Systems of Equations. University Press, Cambridge (1990)MATHGoogle Scholar
  26. 26.
    Norris, J.R.: Markov Chains. Cambridge University Press (1997)Google Scholar
  27. 27.
    Richardson, D.: Zero tests for constants in simple scientific computation. Mathematics in Computer Science 1(1), 21–37 (2007)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Rudin, W.: Principles of Mathematical Analysis. McGraw-Hill (1976)Google Scholar
  29. 29.
    Taylor, P.: A lambda calculus for real analysis. Journal of Logic and Analysis 2(5), 1–115 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Luca Bortolussi
    • 1
    • 2
  • Jane Hillston
    • 3
  1. 1.Department of Mathematics and GeosciencesUniversity of TriesteItaly
  2. 2.CNR/ISTIPisaItaly
  3. 3.Laboratory for the Foundations of Computer Science, School of InformaticsUniversity of EdinburghUK

Personalised recommendations