Spatial and Epistemic Modalities in Constraint-Based Process Calculi

  • Sophia Knight
  • Catuscia Palamidessi
  • Prakash Panangaden
  • Frank D. Valencia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7454)


We introduce spatial and epistemic process calculi for reasoning about spatial information and knowledge distributed among the agents of a system. We introduce domain-theoretical structures to represent spatial and epistemic information. We provide operational and denotational techniques for reasoning about the potentially infinite behaviour of spatial and epistemic processes. We also give compact representations of infinite objects that can be used by processes to simulate announcements of common knowledge and global information.


Modal Logic Closure Operator Constraint System Epistemic Logic Epistemic Modality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramsky, S., Jung, A.: Domain theory. In: Maibaum, T.S.E., Abramsky, S., Gabbay, D.M. (eds.) Handbook of Logic in Computer Science, vol. III. Oxford University Press (1994)Google Scholar
  2. 2.
    Bengtson, J., Johansson, M., Parrow, J., Victor, B.: Psi-calculi: Mobile processes, nominal data, and logic. In: LICS (2009)Google Scholar
  3. 3.
    Buscemi, M.G., Montanari, U.: CC-Pi: A Constraint-Based Language for Specifying Service Level Agreements. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 18–32. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Caires, L., Cardelli, L.: A spatial logic for concurrency - i. Inf. and Comp (2003)Google Scholar
  5. 5.
    Caires, L., Cardelli, L.: A spatial logic for concurrency - ii. Theor. Comp. Sci. (2004)Google Scholar
  6. 6.
    Cardelli, L., Gordon, A.D.: Mobile ambients. Theor. Comput. Sci. 240(1), 177–213 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Chadha, R., Delaune, S., Kremer, S.: Epistemic Logic for the Applied Pi Calculus. In: Lee, D., Lopes, A., Poetzsch-Heffter, A. (eds.) FMOODS/FORTE 2009. LNCS, vol. 5522, pp. 182–197. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    de Boer, F.S., Pierro, A.D., Palamidessi, C.: Nondeterminism and infinite computations in constraint programming. Theor. Comput. Sci. 151(1), 37–78 (1995)zbMATHCrossRefGoogle Scholar
  9. 9.
    Dechesne, F., Mousavi, M.R., Orzan, S.: Operational and Epistemic Approaches to Protocol Analysis: Bridging the Gap. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 226–241. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Fages, F., Ruet, P., Soliman, S.: Linear concurrent constraint programming: Operational and phase semantics. Inf. Comput. 165(1), 14–41 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. MIT Press (1995)Google Scholar
  12. 12.
    Falaschi, M., Gabbrielli, M., Marriott, K., Palamidessi, C.: Confluence in concurrent constraint programming. Theor. Comput. Sci. 183(2), 281–315 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Halpern, J.Y., Moses, Y.: Knowledge and common knowledge in a distributed environment. In: Proc. of Principles of Distributed Computing, pp. 50–61 (1984)Google Scholar
  14. 14.
    Hughes, D., Shmatikov, V.: Information hiding, anonymity and privacy: a modular approach. Journal of Computer Security 12(1), 3–36 (2004)Google Scholar
  15. 15.
    Kripke, S.: Semantical analysis of modal logic. Zeitschrift fur Mathematische Logik und Grundlagen der Mathematik (1963)Google Scholar
  16. 16.
    Lynch, N.: Distributed Algorithms. Morgan Kaufmann Publishers (1996)Google Scholar
  17. 17.
    McKinsey, J.C.C., Tarski, A.: The algebra of topology. The Annals of Mathematics, second series (1944)Google Scholar
  18. 18.
    Mendler, N.P., Panangaden, P., Scott, P.J., Seely, R.A.G.: A logical view of concurrent constraint programming. Nordic Journal of Computing 2, 182–221 (1995)MathSciNetGoogle Scholar
  19. 19.
    Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes i and ii. Information and Computation 100, 1–77 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Panangaden, P.: Knowledge and Information in Probabilistic Systems. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, p. 4. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Panangaden, P., Saraswat, V., Scott, P., Seely, R.: A Hyperdoctrinal View of Concurrent Constraint Programming. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1992. LNCS, vol. 666, pp. 457–476. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  22. 22.
    Popkorn, S.: First Steps in Modal Logic. Cambridge University Press (1994)Google Scholar
  23. 23.
    Réty, J.-H.: Distributed concurrent constraint programming. Fundam. Inform. (1998)Google Scholar
  24. 24.
    Saraswat, V.A.: Concurrent Constraint Programming Languages. PhD thesis, CMU (1989)Google Scholar
  25. 25.
    Saraswat, V.A., Rinard, M., Panangaden, P.: Semantic foundations of concurrent constraint programming. In: POPL 1991 (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sophia Knight
    • 2
  • Catuscia Palamidessi
    • 2
  • Prakash Panangaden
    • 3
  • Frank D. Valencia
    • 1
  1. 1.CNRS and LIX École Polytechnique de ParisFrance
  2. 2.INRIA and LIX École Polytechnique de ParisFrance
  3. 3.School of Computer ScienceMcGill UniversityCanada

Personalised recommendations