Advertisement

A Theory of History Dependent Abstractions for Learning Interface Automata

  • Fides Aarts
  • Faranak Heidarian
  • Frits Vaandrager
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7454)

Abstract

History dependent abstraction operators are the key for scaling existing methods for active learning of automata to realistic applications. Recently, Aarts, Jonsson & Uijen have proposed a framework for history dependent abstraction operators. Using this framework they succeeded to automatically infer models of several realistic software components with large state spaces, including fragments of the TCP and SIP protocols. Despite this success, the approach of Aarts et al. suffers from limitations that seriously hinder its applicability in practice. In this article, we get rid of some of these limitations and present four important generalizations/improvements of the theory of history dependent abstraction operators. Our abstraction framework supports: (a) interface automata instead of the more restricted Mealy machines, (b) the concept of a learning purpose, which allows one to restrict the learning process to relevant behaviors only, (c) a richer class of abstractions, which includes abstractions that overapproximate the behavior of the system-under-test, and (d) a conceptually superior approach for testing correctness of the hypotheses that are generated by the learner.

Keywords

Output Action Reachable State Label Transition System Process Algebra System Under Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aarts, F., Heidarian, F., Kuppens, H., Olsen, P., Vaandrager, F.: Automata Learning through Counterexample-Guided Abstraction Refinement. In: Proc. FM 2012. LNCS. Springer (to appear, 2012)Google Scholar
  2. 2.
    Aarts, F., Jonsson, B., Uijen, J.: Generating Models of Infinite-State Communication Protocols Using Regular Inference with Abstraction. In: Petrenko, A., Simão, A., Maldonado, J.C. (eds.) ICTSS 2010. LNCS, vol. 6435, pp. 188–204. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Aarts, F., Schmaltz, J., Vaandrager, F.: Inference and Abstraction of the Biometric Passport. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6415, pp. 673–686. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Aarts, F., Vaandrager, F.: Learning I/O Automata. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 71–85. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.Y.: Alternating Refinement Relations. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 163–178. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Baeten, J.C.M., van Beek, D.A., Luttik, B., Markovski, J., Rooda, J.E.: A process-theoretic approach to supervisory control theory. In: ACC 2011, pp. 4496–4501(2011)Google Scholar
  8. 8.
    Baeten, J.C.M., Bergstra, J.A.: Global renaming operators in concrete process algebra. Information and Computation 78(3), 205–245 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Berg, T., Grinchtein, O., Jonsson, B., Leucker, M., Raffelt, H., Steffen, B.: On the Correspondence Between Conformance Testing and Regular Inference. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 175–189. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.): Handbook of Process Algebra. North-Holland (2001)Google Scholar
  11. 11.
    Cho, C.Y., Babic, D., Shin, E.C.R., Song, D.: Inference and analysis of formal models of botnet command and control protocols. In: ACM Conference on Computer and Communications Security, pp. 426–439. ACM (2010)Google Scholar
  12. 12.
    Comparetti, P., Wondracek, G., Krügel, C., Kirda, E.: Prospex: Protocol specification extraction. In: IEEE Symposium on Security and Privacy, pp. 110–125. IEEE (2009)Google Scholar
  13. 13.
    Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Proc. POPL, pp. 238–252 (1977)Google Scholar
  14. 14.
    Dams, D., Gerth, R., Grumberg, O.: Abstract interpretation of reactive systems. ACM TOPLS 19(2), 253–291 (1997)CrossRefGoogle Scholar
  15. 15.
    de Alfaro, L., Henzinger, T.A.: Interface automata. SIGSOFT Softw. Eng. Notes 26, 109–120 (2001)CrossRefGoogle Scholar
  16. 16.
    Ferrari, G., Gnesi, S., Montanari, U., Pistore, M.: A model-checking verification environment for mobile processes. ACM TOSEM 12(4), 440–473 (2003)CrossRefGoogle Scholar
  17. 17.
    de la Higuera, C.: Grammatical Inference: Learning Automata and Grammars. Cambridge University Press (April 2010)Google Scholar
  18. 18.
    Howar, F., Steffen, B., Merten, M.: From ZULU to RERS. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6415, pp. 687–704. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Howar, F., Steffen, B., Merten, M.: Automata Learning with Automated Alphabet Abstraction Refinement. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 263–277. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Hungar, H., Niese, O., Steffen, B.: Domain-Specific Optimization in Automata Learning. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 315–327. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Jard, C., Jéron, T.: TGV: theory, principles and algorithms. STTT 7(4), 297–315 (2005)CrossRefGoogle Scholar
  22. 22.
    Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers. Addison-Wesley Longman Publishing Co., Inc. (2002)Google Scholar
  23. 23.
    Leucker, M.: Learning Meets Verification. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2006. LNCS, vol. 4709, pp. 127–151. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  24. 24.
    Loiseaux, C., Graf, S., Sifakis, J., Boujjani, A., Bensalem, S.: Property preserving abstractions for the verification of concurrent systems. FMSD 6(1), 11–44 (1995)zbMATHGoogle Scholar
  25. 25.
    Lynch, N., Tuttle, M.: An introduction to input/output automata. CWI Quarterly 2(3), 219–246 (1989)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Lynch, N., Vaandrager, F.: Forward and backward simulations, I: Untimed systems. Inf. Comput. 121(2), 214–233 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Merten, M., Steffen, B., Howar, F., Margaria, T.: Next Generation LearnLib. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 220–223. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  28. 28.
    Milner, R.: Communication and Concurrency. Prentice-Hall (1989)Google Scholar
  29. 29.
    Montanari, U., Pistore, M.: Checking Bisimilarity for Finitary Pi-Calculus. In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 42–56. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  30. 30.
    Raffelt, H., Steffen, B., Berg, T., Margaria, T.: LearnLib: a framework for extrapolating behavioral models. STTT 11(5), 393–407 (2009)CrossRefGoogle Scholar
  31. 31.
    Rivest, R., Schapire, R.: Inference of finite automata using homing sequences. In: Proc. STOC, pp. 411–420. ACM (1989)Google Scholar
  32. 32.
    Rusu, V., du Bousquet, L., Jéron, T.: An Approach to Symbolic Test Generation. In: Grieskamp, W., Santen, T., Stoddart, B. (eds.) IFM 2000. LNCS, vol. 1945, pp. 338–357. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  33. 33.
    Tretmans, J.: Test generation with inputs, outputs, and repetitive quiescence. Software–Concepts and Tools 17, 103–120 (1996)zbMATHGoogle Scholar
  34. 34.
    Tretmans, J.: Model Based Testing with Labelled Transition Systems. In: Hierons, R.M., Bowen, J.P., Harman, M. (eds.) FORTEST 2008. LNCS, vol. 4949, pp. 1–38. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  35. 35.
    Veanes, M., Bjørner, N.: Input-Output Model Programs. In: Leucker, M., Morgan, C. (eds.) ICTAC 2009. LNCS, vol. 5684, pp. 322–335. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  36. 36.
    de Vries, R.G., Tretmans, J.: Towards Formal Test Purposes. In: FATES 2001, BRICS Notes NS-01-4, pp. 61–76. Univ. Aarhus (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Fides Aarts
    • 1
  • Faranak Heidarian
    • 1
  • Frits Vaandrager
    • 1
  1. 1.Institute for Computing and Information SciencesRadboud University NijmegenNijmegenThe Netherlands

Personalised recommendations