A Hybrid Approach to Piecewise Modelling of Biochemical Systems

  • Zujian Wu
  • Shengxiang Yang
  • David Gilbert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7491)


Modelling biochemical systems has received considerable attention over the last decade from scientists and engineers across a number of fields, including biochemistry, computer science, and mathematics. Due to the complexity of biochemical systems, it is natural to construct models of the biochemical systems incrementally in a piecewise manner. This paper proposes a hybrid approach which applies an evolutionary algorithm to select and compose pre-defined building blocks from a library of atomic models, mutating their products, thus generating complex systems in terms of topology, and employs a global optimization algorithm to fit the kinetic rates. Experiments using two signalling pathways show that given target behaviours it is feasible to explore the model space by this hybrid approach, generating a set of synthetic models with alternative structures and similar behaviours to the desired ones.


Hybrid Approach Extracellular Signal Regulate Kinase Kinetic Rate MAPK Cascade Raf1 Kinase Inhibitor Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anily, S., Federgruen, A.: Simulated annealing methods with general acceptance probabilities. J. Appl. Prob. 24(3), 657–667 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Balsa-Canto, E., Banga, J.R., Egea, J.A., Fernandez-Villaverde, A., de Hijas-Liste, G.M.: Global optimization in systems biology: stochastic methods and their applications. In: Goryanin, I.I., Goryachev, A.B. (eds.) Advances in Systems Biology, Adv. Exp. Med. Biol., vol. 736, pp. 409–424 (2012)Google Scholar
  3. 3.
    Breitling, R., Gilbert, D., Heiner, M., Orton, R.: A structured approach for the engineering of biochemical network models, illustrated for signalling pathways. Brief Bioinform. 9(5), 404–422 (2008)CrossRefGoogle Scholar
  4. 4.
    Brightman, F.A., Fell, D.A.: Differential feedback regulation of the MAPK cascade underlies the quantitative differences in EGF and NGF signalling in PC12 cells. FEBS Letters 482(3), 169–174 (2000)CrossRefGoogle Scholar
  5. 5.
    Cao, H., Romero-Campero, F., Heeb, S., Camara, M., Krasnogor, N.: Evolving cell models for systems and synthetic biology. Syst. Synth. Biol. 4(1), 55–84 (2010)CrossRefGoogle Scholar
  6. 6.
    Cho, K.H., Shin, S.Y., Kim, H.W., Wolkenhauer, O., Mcferran, B., Kolch, W.: Mathematical Modeling of the Influence of RKIP on the ERK Signaling Pathway. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 127–141. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Feng, X.J., Hooshangi, S., Chen, D., Li, G., Weiss, R., Rabitz, H.: Optimizing genetic circuits by global sensitivity analysis. Biophys 87(4), 2195–2202 (2004)CrossRefGoogle Scholar
  8. 8.
    Francois, P., Hakim, V.: Design of genetic networks with specified functions by evolution in silico. PNAS 101(2), 580–585 (2004)CrossRefGoogle Scholar
  9. 9.
    Gilbert, D., Breitling, R., Heiner, M., Donaldson, R.: An Introduction to BioModel Engineering, Illustrated for Signal Transduction Pathways. In: Corne, D.W., Frisco, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2008. LNCS, vol. 5391, pp. 13–28. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Kitagawa, J., Iba, H.: Identifying metabolic pathways and gene regulation networks with evolutionary algorithms. In: Fogel, G.B., Corne, D.W. (eds.) Evolutionary Computation in Bioinformatics, pp. 255–278 (2003)Google Scholar
  11. 11.
    Levchenko, A., Bruck, J., Sternberg, P.W.: Scaffold proteins biphasically affect the levels of mitogen-activated protein kinase signaling and reduce its threshold properties. Proc. of the National Academy of Sciences of the United States of America 97(11), 5818–5823 (2000)CrossRefGoogle Scholar
  12. 12.
    Kholodenko, B.N.: Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. Eur. J. Biochem. 267, 1583–1588 (2000)CrossRefGoogle Scholar
  13. 13.
    Manca, V., Marchetti, L.: Log-Gain stoichiometric stepwise regression for MP systems. J. Found. Comput. Sci. 22(1), 97–106 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Maria, G.: A review of algorithms and trends in kinetic model identification for chemical and biochemical systems. Chem. Biochem. Eng. Q. 18(3), 195–222 (2004)Google Scholar
  15. 15.
    Murata, T.: Petri Nets: properties, analysis and applications. Proc. of the IEEE 77(4), 541–580 (1989)CrossRefGoogle Scholar
  16. 16.
    Rodrigo, G., Carrera, J., Jaramillo, A.: Genetdes: automatic design of transcriptional networks. Bioinformatics 23(14), 1857–1858 (2007)CrossRefGoogle Scholar
  17. 17.
    Schulz, M., Bakker, B.M., Klipp, E.: TIde: a software for the systematic scanning of drug targets in kinetic network models. BMC Bioinformatics 10(1), 344–353 (2009)CrossRefGoogle Scholar
  18. 18.
    Sendin, J.O.H., Exler, O., Banga, J.R.: Multi-objective mixed integer strategy for the optimisation of biological networks. Systems Biology, IET 4(3), 236–248 (2010)CrossRefGoogle Scholar
  19. 19.
    Sun, J., Garibaldi, J.M., Hodgman, C.: Parameter estimation using metaheuristics in systems biology: a comprehensive review. IEEE/ACM Trans. Comput. Biol. Bioinformatics 9(1), 185–202 (2012)CrossRefGoogle Scholar
  20. 20.
    Vyshemirsky, V., Girolami, M.: Bayesian ranking of biochemical system models. BMC Bioinformatics 24(6), 833–839 (2008)Google Scholar
  21. 21.
    Wu, Z., Gao, Q., Gilbert, D.: Target driven biochemical network reconstruction based on petri nets and simulated annealing. In: Quaglia, P. (ed.) CMSB 2010, pp. 33–42. ACM (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Zujian Wu
    • 1
  • Shengxiang Yang
    • 1
  • David Gilbert
    • 1
  1. 1.School of Information Systems, Computing and MathematicsBrunel UniversityUxbridgeUK

Personalised recommendations