Analysing the Effects of Diverse Operators in a Genetic Programming System

  • MinHyeok Kim
  • Bob (RI) McKay
  • Kangil Kim
  • Xuan Hoai Nguyen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7491)


Some Genetic Programming (GP) systems have fewer structural constraints than expression tree GP, permitting a wider range of operators. Using one such system, TAG3P, we compared the effects of such new operators with more standard ones on individual fitness, size and depth, comparing them on a number of symbolic regression and tree structuring problems. The operator effects were diverse, as the originators had claimed. The results confirm the overall primacy of crossover, but strongly suggest that new operators can usefully supplement, or even replace, subtree mutation. They give a better understanding of the features of each operator, and the contexts where it is likely to be useful. They illuminate the diverse effects of different operators, and provide justification for adaptive use of a range of operators.


Evolutionary Operator Tree Adjoining Grammar Genetic Programming TAG3P Fitness Tree Size Tree Depth 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Daida, J., Li, H., Tang, R., Hilss, A.: What Makes a Problem GP-hard? Validating a Hypothesis of Structural Causes. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1665–1677. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Daida, J.M., Bertram, R.R., Stanhope, S.A., Khoo, J.C., Chaudhary, S.A., Chaudhri, O.A., Polito, J.A.I.: What makes a problem gp-hard? analysis of a tunably difficult problem in genetic programming. Genetic Programming and Evolvable Machines 2, 165–191 (2001), doi:10.1023/A:1011504414730zbMATHCrossRefGoogle Scholar
  3. 3.
    Ferreira, C.: Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence. Springer (2002)Google Scholar
  4. 4.
    Goldberg, D.E., O’Reilly, U.-M.: Where Does the Good Stuff Go, and Why? How Contextual Semantics Influences Program Structure in Simple Genetic Programming. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998. LNCS, vol. 1391, pp. 16–36. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Gustafson, S., Vanneschi, L.: Operator-Based Distance for Genetic Programming: Subtree Crossover Distance. In: Keijzer, M., Tettamanzi, A.G.B., Collet, P., van Hemert, J., Tomassini, M. (eds.) EuroGP 2005. LNCS, vol. 3447, pp. 178–189. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Hoai, N.: A Flexible Representation for Genetic Programming: Lessons from Natural Language Processing. Ph.D. thesis, University of New South Wales, Australian Defence Force Academy, Australia (2004)Google Scholar
  7. 7.
    Hoai, N., McKay, R.: A framework for tree adjunct grammar guided genetic programming. In: Proc. Postgraduate Conf. on Computer Science, Canberra, Australia, pp. 93–99 (2001)Google Scholar
  8. 8.
    Hugosson, J., Hemberg, E., Brabazon, A., O’Neill, M.: Genotype representations in grammatical evolution. Applied Soft Computing 10(1), 36–43 (2010)CrossRefGoogle Scholar
  9. 9.
    Joshi, A.K., Levy, L.S., Takahashi, M.: Tree adjunct grammars. Journal of Computer and System Sciences 10(1), 136–163 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Kim, M., McKay, R.I.B., Kim, D.K., Nguyen, X.H.: Evolutionary Operator Self-adaptation with Diverse Operators. In: Moraglio, A., Silva, S., Krawiec, K., Machado, P., Cotta, C. (eds.) EuroGP 2012. LNCS, vol. 7244, pp. 230–241. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  12. 12.
    Langdon, W.B.: Size fair and homologous tree crossovers for tree genetic programming. Genetic Programming and Evolvable Machines 1(1-2), 95–119 (2000)zbMATHCrossRefGoogle Scholar
  13. 13.
    Langdon, W., Soule, T., Poli, R., Foster, J.: The evolution of size and shape. In: Advances in Genetic Programming, vol. 3, ch.8, pp. 163–190. The MIT Press, Cambridge (1999)Google Scholar
  14. 14.
    Moraglio, A., Poli, R.: Topological Interpretation of Crossover. In: Deb, K., Tari, Z. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 1377–1388. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    O’ Reilly, U., Goldberg, D.: How fitness structure affects subsolution acquisition in genetic programming. Genetic Programming 98, 269–277 (1998)Google Scholar
  16. 16.
    Poli, R., McPhee, N.: General schema theory for genetic programming with subtree-swapping crossover: Part i. Evolutionary Computation 11(1), 53–66 (2003)CrossRefGoogle Scholar
  17. 17.
    Tackett, W., Carmi, A.: The unique implications of brood selection for genetic programming. In: World Congress on Computational Intelligence, Orlando, FL, USA, vol. 1, pp. 160–165 (June 1994)Google Scholar
  18. 18.
    Whigham, P.A.: A schema theorem for context-free grammars. In: IEEE Conf. on Evolutionary Computation, vol. 1, pp. 178–181. IEEE Press (November 1995)Google Scholar
  19. 19.
    Whigham, P., et al.: Grammatically-based genetic programming. In: Proc. Workshop on Genetic Programming: From Theory to Real-World Applications, July 9, pp. 33–41. Ueniversity of Rochester (1995)Google Scholar
  20. 20.
    Wineberg, M., Oppacher, F.: Distance between Populations. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 1481–1492. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • MinHyeok Kim
    • 1
  • Bob (RI) McKay
    • 1
  • Kangil Kim
    • 1
  • Xuan Hoai Nguyen
    • 2
  1. 1.Seoul National UniversityKorea
  2. 2.Hanoi UniversityVietnam

Personalised recommendations