On the Anytime Behavior of IPOP-CMA-ES

  • Manuel López-Ibáñez
  • Tianjun Liao
  • Thomas Stützle
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7491)


Anytime algorithms aim to produce a high-quality solution for any termination criterion. A recent proposal is to improve automatically the anytime behavior of single-objective optimization algorithms by incorporating the hypervolume, a well-known quality measure in multi-objective optimization, into an automatic configuration tool. In this paper, we show that the anytime behavior of IPOP-CMA-ES can be significantly improved with respect to its default parameters by applying this method. We also show that tuning IPOP-CMA-ES with respect to the final quality obtained after a large termination criterion leads to better results at that particular termination criterion, but worsens the performance of IPOP-CMA-ES when stopped earlier. The main conclusion is that IPOP-CMA-ES should be tuned with respect to the anytime behavior if the exact termination criterion is not known in advance.


Anytime algorithms automatic parameter tuning continuous optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing population size. In: Proc. of CEC 2005, pp. 1769–1776. IEEE Press, Piscataway (2005)Google Scholar
  2. 2.
    Balaprakash, P., Birattari, M., Stützle, T.: Improvement Strategies for the F-Race Algorithm: Sampling Design and Iterative Refinement. In: Bartz-Beielstein, T., Blesa Aguilera, M.J., Blum, C., Naujoks, B., Roli, A., Rudolph, G., Sampels, M. (eds.) HM 2007. LNCS, vol. 4771, pp. 108–122. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation 9(2), 159–195 (2001)CrossRefGoogle Scholar
  4. 4.
    Herrera, F., Lozano, M., Molina, D.: Test suite for the special issue of Soft Computing on scalability of evolutionary algorithms and other metaheuristics for large scale continuous optimization problems (2010),
  5. 5.
    Hoos, H.H., Stützle, T.: Stochastic Local Search—Foundations and Applications. Morgan Kaufmann Publishers, San Francisco (2005)zbMATHGoogle Scholar
  6. 6.
    Hutter, F., Hoos, H.H., Leyton-Brown, K., Murphy, K.P.: An experimental investigation of model-based parameter optimisation: SPO and beyond. In: Rothlauf, F. (ed.) Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2009, pp. 271–278. ACM Press, New York (2009)CrossRefGoogle Scholar
  7. 7.
    Liao, T., Montes de Oca, M.A., Stützle, T.: Computational results for an automatically tuned IPOP-CMA-ES on the CEC’05 benchmark set. Tech. Rep. TR/IRIDIA/2011-022, IRIDIA, Université Libre de Bruxelles, Belgium (2011)Google Scholar
  8. 8.
    Liao, T., Montes de Oca, M.A., Stützle, T.: Tuning parameters across mixed dimensional instances: A performance scalability study of Sep-G-CMA-ES. In: Krasnogor, N., Lanzi, P.L. (eds.) GECCO (Companion), pp. 703–706. ACM Press, New York (2011)Google Scholar
  9. 9.
    López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace package, iterated race for automatic algorithm configuration. Tech. Rep. TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium (2011)Google Scholar
  10. 10.
    López-Ibáñez, M., Liao, T., Stützle, T.: On the anytime behavior of IPOP-CMA-ES: Supplementary material (2012),
  11. 11.
    López-Ibáñez, M., Stützle, T.: Automatically improving the anytime behaviour of optimisation algorithms. Tech. Rep. TR/IRIDIA/2012-012, IRIDIA, Université Libre de Bruxelles, Belgium (2012)Google Scholar
  12. 12.
    Smit, S.K., Eiben, A.E.: Beating the ’world champion’ evolutionary algorithm via REVAC tuning. In: Ishibuchi, H., et al. (eds.) Proc. of CEC 2010, pp. 1–8. IEEE Press, Piscataway (2010)Google Scholar
  13. 13.
    Suganthan, P.N., Hansen, N., Liang, J., Deb, K., Chen, Y.P., Auger, A., Tiwari, S.: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Tech. rep., Nanyang Technological University, Singapore (2005)Google Scholar
  14. 14.
    Zilberstein, S.: Using anytime algorithms in intelligent systems. AI Magazine 17(3), 73–83 (1996)Google Scholar
  15. 15.
    Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Transactions on Evolutionary Computation 7(2), 117–132 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Manuel López-Ibáñez
    • 1
  • Tianjun Liao
    • 1
  • Thomas Stützle
    • 1
  1. 1.IRIDIA, CoDEUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations