Homogeneous and Heterogeneous Island Models for the Set Cover Problem

  • Andrea Mambrini
  • Dirk Sudholt
  • Xin Yao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7491)

Abstract

We propose and analyse two island models that provably find good approximations for the SetCover problem. A homogeneous island model running parallel instances of the SEMO algorithm—following Friedrich et al. (Evolutionary Computation 18(4), 2010, 617-633)—leads to significant speedups over a single SEMO instance, but at the expense of large communication costs. A heterogeneous island model, where each island optimises a different single-objective fitness function, provides similar speedups at reduced communication costs. We compare different topologies for the homogeneous model and different migration policies for the heterogeneous one.

Keywords

Parallel evolutionary algorithms set cover island model theory runtime analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Luque, G., Alba, E.: Parallel Genetic Algorithms–Theory and Real World Applications. Springer (2011)Google Scholar
  2. 2.
    Nedjah, N., de Macedo Mourelle, L., Alba, E.: Parallel Evolutionary Computations. Springer (2006)Google Scholar
  3. 3.
    Tomassini, M.: Spatially Structured Evolutionary Algorithms: Artificial Evolution in Space and Time. Springer (2005)Google Scholar
  4. 4.
    Skolicki, Z., De Jong, K.: The influence of migration sizes and intervals on island models. In: Proc. of GECCO 2005, pp. 1295–1302. ACM (2005)Google Scholar
  5. 5.
    Rudolph, G.: Takeover time in parallel populations with migration. In: Filipic, B., Silc, J. (eds.) Proc. of BIOMA 2006, pp. 63–72 (2006)Google Scholar
  6. 6.
    Lässig, J., Sudholt, D.: The benefit of migration in parallel evolutionary algorithms. In: Proc. of GECCO 2010, pp. 1105–1112. ACM (2010)Google Scholar
  7. 7.
    Lässig, J., Sudholt, D.: Experimental Supplements to the Theoretical Analysis of Migration in the Island Model. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 224–233. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Watson, R.A., Jansen, T.: A building-block royal road where crossover is provably essential. In: Proc. of GECCO 2007, pp. 1452–1459. ACM (2007)Google Scholar
  9. 9.
    Neumann, F., Oliveto, P.S., Rudolph, G., Sudholt, D.: On the effectiveness of crossover for migration in parallel evolutionary algorithms. In: Proc. of GECCO 2011, pp. 1587–1594. ACM (2011)Google Scholar
  10. 10.
    Lässig, J., Sudholt, D.: General Scheme for Analyzing Running Times of Parallel Evolutionary Algorithms. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 234–243. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Lässig, J., Sudholt, D.: Adaptive population models for offspring populations and parallel evolutionary algorithms. In: Proc. of FOGA 2011, pp. 181–192. ACM (2011)Google Scholar
  12. 12.
    Lässig, J., Sudholt, D.: Analysis of Speedups in Parallel Evolutionary Algorithms for Combinatorial Optimization. In: Asano, T., Nakano, S.-i., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 405–414. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Burke, E.K., Hart, E., Kendall, G., Newall, J., Ross, P., Schulenburg, S.: Hyper-heuristics: An emerging direction in modern search technology, pp. 457–474. Kluwer (2003)Google Scholar
  14. 14.
    Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., Witt, C.: Approximating covering problems by randomized search heuristics using multi-objective models. Evolutionary Computation 18(4), 617–633 (2010)CrossRefGoogle Scholar
  15. 15.
    Doerr, B., Eremeev, A.V., Neumann, F., Theile, M., Thyssen, C.: Evolutionary algorithms and dynamic programming. Theoretical Computer Science 412(43), 6020–6035 (2011)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Skolicki, Z.: An Analysis of Island Models in Evolutionary Computation. PhD thesis, George Mason University, Fairfax, VA (2000)Google Scholar
  17. 17.
    Alba, E.: Parallel evolutionary algorithms can achieve super-linear performance. Information Processing Letters 82(1), 7–13 (2002)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233–235 (1979)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Lässig, J., Sudholt, D.: General upper bounds on the running time of parallel evolutionary algorithms. ArXiv e-prints (2012) Extended version of [10], http://arxiv.org/abs/1206.3522.

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Andrea Mambrini
    • 1
  • Dirk Sudholt
    • 2
  • Xin Yao
    • 1
  1. 1.University of BirminghamBirminghamUK
  2. 2.University of SheffieldSheffieldUK

Personalised recommendations