Acceleration of Evolutionary Image Filter Design Using Coevolution in Cartesian GP

  • Michaela Sikulova
  • Lukas Sekanina
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7491)


The aim of this work is to accelerate the task of evolutionary image filter design using coevolution of candidate filters and training vectors subsets. Two coevolutionary methods are implemented and compared for this task in the framework of Cartesian Genetic Programming (CGP). Experimental results show that only 15–20% of original training vectors are needed to find an image filter which provides the same quality of filtering as the best filter evolved using the standard CGP which utilizes the whole training set. Moreover, the median time of evolution was reduced 2.99 times in comparison with the standard CGP.


Execution Time Graphic Processing Unit Training Image Evolutionary Design Training Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Harding, S.L., Banzhaf, W.: Hardware acceleration for cgp: Graphics processing units. In: Cartesian Genetic Programming, pp. 231–253. Springer (2011)Google Scholar
  2. 2.
    Hillis, D.W.: Co-evolving parasites improve simulated evolution as an optimization procedure. Physica D: Nonlinear Phenomena 42(1–3), 228–234 (1990)CrossRefGoogle Scholar
  3. 3.
    Koza, J.R., Keane, M.A., Streeter, M.J., Mydlowec, W., Yu, J., Lanza, G.: Genetic Programming IV: Routine Human-Competitive Machine Intelligence. Kluwer Academic Publishers (2003)Google Scholar
  4. 4.
    Lohn, J., Kraus, W., Haith, G.: Comparing a coevolutionary genetic algorithm for multiobjective optimization. In: Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002, vol. 2, pp. 1157–1162 (2002)Google Scholar
  5. 5.
    Miller, J.F.: Cartesian Genetic Programming. Springer (2011)Google Scholar
  6. 6.
    Pagie, L., Hogeweg, P.: Evolutionary consequences of coevolving targets. Evolutionary Computation 5(4), 401–418 (1997)CrossRefGoogle Scholar
  7. 7.
    Rosin, C.D., Bellew, R.K.: New methods for competitive coevolution. Tech. Rep. CS96-491, Department of Computer Science and Engineering, University of California, San Diego (1996)Google Scholar
  8. 8.
    Schmidt, M.D., Lipson, H.: Coevolution of Fitness Predictors. IEEE Transactions on Evolutionary Computation 12(6), 736–749 (2008)CrossRefGoogle Scholar
  9. 9.
    Sekanina, L., Harding, L.S., Banzhaf, W., Kowaliw, T.: Image processing and cgp. In: Cartesian Genetic Programming, pp. 181–215. Springer (2011)Google Scholar
  10. 10.
    Šikulová, M., Sekanina, L.: Coevolution in Cartesian Genetic Programming. In: Moraglio, A., Silva, S., Krawiec, K., Machado, P., Cotta, C. (eds.) EuroGP 2012. LNCS, vol. 7244, pp. 182–193. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Vasicek, Z., Sekanina, L.: Hardware accelerator of cartesian genetic programming with multiple fitness units. Computing and Informatics 29(6), 1359–1371 (2010)Google Scholar
  12. 12.
    Wang, J., Chen, Q.S., Lee, C.H.: Design and implementation of a virtual reconfigurable architecture for different applications of intrinsic evolvable hardware. IET Computers and Digital Techniques 2(5), 386–400 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Michaela Sikulova
    • 1
  • Lukas Sekanina
    • 1
  1. 1.Faculty of Information Technology, IT4Innovations Centre of ExcellenceBrno University of TechnologyBrnoCzech Republic

Personalised recommendations