Advertisement

History-Free Sequential Aggregate Signatures

  • Marc Fischlin
  • Anja Lehmann
  • Dominique Schröder
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7485)

Abstract

Aggregation schemes allow to combine several cryptographic values like message authentication codes or signatures into a shorter value such that, despite compression, some notion of unforgeability is preserved. Recently, Eikemeier et al. (SCN 2010) considered the notion of history-free sequential aggregation for message authentication codes, where the sequentially-executed aggregation algorithm does not need to receive the previous messages in the sequence as input. Here we discuss the idea for signatures where the new aggregate does not rely on the previous messages and public keys either, thus inhibiting the costly verifications in each aggregation step as in previous schemes by Lysyanskaya et al. (Eurocrypt 2004) and Neven (Eurocrypt 2008). Analogously to MACs we argue about new security definitions for such schemes and compare them to previous notions for history-dependent schemes. We finally give a construction based on the BLS signature scheme which satisfies our notion.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahn, J.H., Green, M., Hohenberger, S.: Synchronized aggregate signatures: New definitions, constructions and applications. In: Annual Conference on Computer and Communications Security (CCS), pp. 473–484. ACM Press (2010)Google Scholar
  2. 2.
    Bagherzandi, A., Jarecki, S.: Identity-Based Aggregate and Multi-Signature Schemes Based on RSA. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 480–498. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Namprempre, C., Neven, G.: Unrestricted Aggregate Signatures. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 411–422. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Boldyreva, A.: Threshold Signatures, Multisignatures and Blind Signatures Based on the Gap-Diffie-Hellman-Group Signature Scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Boldyreva, A., Gentry, C., O’Neill, A., Yum, D.H.: New multiparty signature schemes for network routing applications. ACM Trans. Inf. Syst. Secur. 12(1) (2008)Google Scholar
  6. 6.
    Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and Verifiably Encrypted Signatures From Bilinear Maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. Journal of Cryptology 17(4), 297–319 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Brogle, K., Goldberg, S., Reyzin, L.: Sequential aggregate signatures with lazy verification. Cryptology ePrint Archive: Report 2011/222 (2011), http://eprint.iacr.org/2011/222l
  9. 9.
    Coron, J.-S., Naccache, D.: Boneh et al.’s k-Element Aggregate Extraction Assumption Is Equivalent to the Diffie-Hellman Assumption. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 392–397. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Eikemeier, O., Fischlin, M., Götzmann, J.-F., Lehmann, A., Schröder, D., Schröder, P., Wagner, D.: History-Free Aggregate Message Authentication Codes. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 309–328. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Gentry, C., Ramzan, Z.: Identity-Based Aggregate Signatures. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 257–273. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Lepinski, M.: BGPSec protocol specification. IETF Internet-Draft (2011)Google Scholar
  13. 13.
    Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential Aggregate Signatures and Multisignatures Without Random Oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential Aggregate Signatures from Trapdoor Permutations. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 74–90. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Micali, S., Ohta, K., Reyzin, L.: Accountable-subgroup multisignatures: extended abstract. In: Annual Conference on Computer and Communications Security (CCS), pp. 245–254. ACM Press (2001)Google Scholar
  16. 16.
    Neven, G.: Efficient Sequential Aggregate Signed Data. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 52–69. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Schröder, D.: How to Aggregate the CL Signature Scheme. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 298–314. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marc Fischlin
    • 1
  • Anja Lehmann
    • 2
  • Dominique Schröder
    • 3
    • 4
  1. 1.Darmstadt University of TechnologyGermany
  2. 2.IBM Research ZurichSwitzerland
  3. 3.University of MarylandUSA
  4. 4.Saarland UniversityGermany

Personalised recommendations