Advertisement

Oblivious Transfer with Hidden Access Control from Attribute-Based Encryption

  • Jan Camenisch
  • Maria Dubovitskaya
  • Robert R. Enderlein
  • Gregory Neven
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7485)

Abstract

The notion of oblivious transfer with hidden access control policies (HACOT) was recently proposed by Camenisch et al. (Public-Key Cryptography 2011). This primitive allows a user to anonymously query a database where each record is protected by a hidden attribute-based access control policy. At each query, the user either learns the value of a single record if the attributes in his key satisfy the policy, or the mere fact that his attributes do not satisfy the policy. The database, even when colluding with the key issuer, learns nothing about the identity of the user, the index or the access policy of the record, or whether access was granted or denied. At the same time, the database can keep an eye on the overall access frequency to prevent the data from being “crawled”.

In this paper, we present a new HACOT scheme which is more efficient and offers more expressive policies than the scheme presented by Camenisch et al. We construct our HACOT protocol based on a hidden ciphertext-policy attribute-based encryption (HP-ABE) scheme by Nishide et al.: users are issued HACOT decryption keys based on HP-ABE attributes and HACOT records are encrypted under HP-ABE policies. However, as we will see, this simple approach does not work and we need to extend the Nishide et al. scheme as follows. First, we add protocols that allows users to verify that the public key of the issuer and ciphertexts are correctly formed. Second, we reserve one attribute and give the corresponding decryption key only to the database. Thereby users can no longer decrypt records by themselves but require the help of the database. Third, we provide a joint decryption protocol between the user and the database, so that the database does not learn which ciphertext is decrypted. The latter will also allow one to optionally add revocation of the users’ access. We prove our construction secure by a reduction to the security of Nishide et al.’s scheme, the Symmetric External Diffie-Hellman (SXDH) and Simultaneous Flexible Pairing (SFP) assumptions.

Keywords

Privacy Oblivious Transfer Attribute-Based Encryption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-Preserving Signatures and Commitments to Group Elements. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)Google Scholar
  2. 2.
    Abe, M., Haralambiev, K., Ohkubo, M.: Signing on Elements in Bilinear Groups for Modular Protocol Design. IACR Cryptology ePrint Archive, 133 (2010)Google Scholar
  3. 3.
    Bellare, M., Namprempre, C.: Authenticated Encryption: Relations among Notions and Analysis of the Generic Composition Paradigm. J. Cryptology 21(4), 469–491 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-Policy Attribute-Based Encryption. In: IEEE Symposium on Security and Privacy, pp. 321–334. IEEE Computer Society (2007)Google Scholar
  5. 5.
    Camenisch, J., Dubovitskaya, M., Enderlein, R.R., Neven, G.: Oblivious Transfer with Hidden Access Control from Attribute-Based Encryption. IACR Cryptology ePrint Archive, 348 (2012)Google Scholar
  6. 6.
    Camenisch, J., Dubovitskaya, M., Neven, G.: Oblivious Transfer with Access Control. In: Al-Shaer, E., Jha, S., Keromytis, A.D. (eds.) ACM Conference on Computer and Communications Security, pp. 131–140. ACM (2009)Google Scholar
  7. 7.
    Camenisch, J., Dubovitskaya, M., Neven, G.: Unlinkable Priced Oblivious Transfer with Rechargeable Wallets. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 66–81. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Camenisch, J., Dubovitskaya, M., Neven, G., Zaverucha, G.M.: Oblivious Transfer with Hidden Access Control Policies. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 192–209. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Camenisch, J.L., Neven, G., Shelat, A.: Simulatable Adaptive Oblivious Transfer. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573–590. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Camenisch, J., Stadler, M.: Efficient Group Signature Schemes for Large Groups (Extended Abstract). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)Google Scholar
  11. 11.
    Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic Protocols. IACR Cryptology ePrint Archive, 67 (2000)Google Scholar
  12. 12.
    Coull, S., Green, M., Hohenberger, S.: Controlling Access to an Oblivious Database Using Stateful Anonymous Credentials. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 501–520. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Cramer, R., Damgård, I., MacKenzie, P.D.: Efficient Zero-Knowledge Proofs of Knowledge without Intractability Assumptions. In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 354–373. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. 14.
    Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for Cryptographers. Discrete Applied Mathematics 156(16), 3113–3121 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Green, M., Hohenberger, S., Waters, B.: Outsourcing the Decryption of ABE Ciphertexts. In: USENIX Security Symposium. USENIX Association (2011)Google Scholar
  16. 16.
    Groth, J., Sahai, A.: Efficient Non-interactive Proof Systems for Bilinear Groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Katz, J., Sahai, A., Waters, B.: Predicate Encryption Supporting Disjunctions, Polynomial Equations, and Inner Products. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully Secure Functional Encryption: Attribute-Based Encryption and (Hierarchical) Inner Product Encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Lynn, B.: On the Implementation of Pairing-Based Cryptography. PhD thesis, Stanford University, PBC library (2007), http://crypto.stanford.edu/pbc/
  20. 20.
    Naor, M., Pinkas, B.: Oblivious Transfer with Adaptive Queries. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 573–590. Springer, Heidelberg (1999)Google Scholar
  21. 21.
    Narayan, S., Gagné, M., Safavi-Naini, R.: Privacy Preserving EHR System Using Attribute-based Infrastructure. In: Perrig, A., Sion, R. (eds.) CCSW, pp. 47–52. ACM (2010)Google Scholar
  22. 22.
    Nishide, T.: Cryptographic Schemes with Minimum Disclosure of Private Information in Attribute-Based Encryption and Multiparty Computation. PhD thesis, University of Electro-Communications (2008)Google Scholar
  23. 23.
    Nishide, T., Yoneyama, K., Ohta, K.: Attribute-Based Encryption with Partially Hidden Encryptor-Specified Access Structures. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 111–129. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Okamoto, T., Takashima, K.: Adaptively Attribute-Hiding (Hierarchical) Inner Product Encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 591–608. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  25. 25.
    Pfitzmann, B., Waidner, M.: Composition and Integrity Preservation of Secure Reactive Systems. In: Gritzalis, D., Jajodia, S., Samarati, P. (eds.) ACM Conference on Computer and Communications Security, pp. 245–254. ACM (2000)Google Scholar
  26. 26.
    Pfitzmann, B., Waidner, M.: A Model for Asynchronous Reactive Systems and its Application to Secure Message Transmission. In: IEEE Symposium on Security and Privacy, p. 184 (2001)Google Scholar
  27. 27.
    Rabin, M.O.: How to Exchange Secrets by Oblivious Transfer. Technical Report TR-81, Harvard Aiken Computation Laboratory (1981)Google Scholar
  28. 28.
    Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  29. 29.
    Zhang, Y., Au, M.H., Wong, D.S., Huang, Q., Mamoulis, N., Cheung, D.W., Yiu, S.-M.: Oblivious Transfer with Access Control: Realizing Disjunction without Duplication. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 96–115. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jan Camenisch
    • 1
  • Maria Dubovitskaya
    • 1
    • 2
  • Robert R. Enderlein
    • 1
    • 2
  • Gregory Neven
    • 1
  1. 1.IBM Research - ZurichRüschlikonSwitzerland
  2. 2.Department of Computer ScienceSwiss Federal Institute of Technology (ETH Zürich)ZürichSwitzerland

Personalised recommendations