Advertisement

Active Security in Multiparty Computation over Black-Box Groups

  • Yvo Desmedt
  • Josef Pieprzyk
  • Ron Steinfeld
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7485)

Abstract

Most previous work on unconditionally secure multiparty computation has focused on computing over a finite field (or ring). Multiparty computation over other algebraic structures has not received much attention, but is an interesting topic whose study may provide new and improved tools for certain applications. At CRYPTO 2007, Desmedt et al introduced a construction for a passive-secure multiparty multiplication protocol for black-box groups, reducing it to a certain graph coloring problem, leaving as an open problem to achieve security against active attacks.

We present the first n-party protocol for unconditionally secure multiparty computation over a black-box group which is secure under an active attack model, tolerating any adversary structure Δ satisfying the Q 3 property (in which no union of three subsets from Δ covers the whole player set), which is known to be necessary for achieving security in the active setting. Our protocol uses Maurer’s Verifiable Secret Sharing (VSS) but preserves the essential simplicity of the graph-based approach of Desmedt et al, which avoids each shareholder having to rerun the full VSS protocol after each local computation. A corollary of our result is a new active-secure protocol for general multiparty computation of an arbitrary Boolean circuit.

Keywords

Multi-Party Computation General Adversary Structures Non-Abelian Group Black-Box Graph Colouring Active Security 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barrington, D.A.: Bounded-Width Polynomial-Size Branching Programs Recognize Exactly Those Languages in NC 1. In: STOC 1986, pp. 1–5 (1986)Google Scholar
  2. 2.
    Beerliová-Trubíniová, Z., Hirt, M.: Perfectly-Secure MPC with Linear Communication Complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 213–230. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation. In: STOC 1988, pp. 1–10 (1988)Google Scholar
  4. 4.
    Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols. In: STOC 1988, pp. 11–19 (1988)Google Scholar
  5. 5.
    Cramer, R., Fehr, S., Ishai, Y., Kushilevitz, E.: Efficient Multi-Party Computation Over Rings. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 596–613. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Cramer, R., Damgård, I., Maurer, U.: General Secure Multi-party Computation from any Linear Secret-Sharing Scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Damgård, I., Ishai, Y., Krøigaard, M.: Perfectly Secure Multiparty Computation and the Computational Overhead of Cryptography. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 445–465. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Desmedt, Y., Pieprzyk, J., Steinfeld, R., Sun, X., Tartary, C., Wang, H., Yao, A.C.-C.: Graph coloring applied to secure computation in non-abelian groups. J. Cryptology (to appear, 2011)Google Scholar
  9. 9.
    Desmedt, Y., Pieprzyk, J., Steinfeld, R., Wang, H.: On Secure Multi-party Computation in Black-Box Groups. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 591–612. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Fitzi, M., Hirt, M., Maurer, U.M.: Trading Correctness for Privacy in Unconditional Multi-party Computation. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 121–136. Springer, Heidelberg (1998)Google Scholar
  11. 11.
    Fitzi, M., Hirt, M., Maurer, U.M.: General Adversaries in Unconditional Multi-party Computation. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 232–246. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Fitzi, M., Maurer, U.: Efficient Byzantine Agreement Secure against General Adversaries. In: Kutten, S. (ed.) DISC 1998. LNCS, vol. 1499, pp. 134–148. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  13. 13.
    Goldreich, O.: Foundations of Cryptography: vol. II - Basic Applications. Cambridge University Press (2004)Google Scholar
  14. 14.
    Goldreich, O., Micali, S., Wigderson, A.: How to Play Any Mental Game. In: STOC 1987, pp. 218–229 (1987)Google Scholar
  15. 15.
    Hirt, M., Maurer, U.: Complete Characterization of Adversaries Tolerable in Secure Multi-Party Computation. In: PODC 1997, pp. 25–34 (1997)Google Scholar
  16. 16.
    Hirt, M., Maurer, U.: Player simulation and general adversary structures in perfect multiparty computation. J. Cryptology 13(1), 31–60 (2000)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Hirt, M., Maurer, U.: Robustness for Free in Unconditional Multi-party Computation. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 101–118. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Hirt, M., Maurer, U., Przydatek, B.: Efficient Secure Multi-party Computation. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 143–161. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  19. 19.
    Maurer, U.: Secure multi-party computation made simple. Discrete Applied Mathematics 154, 370–381 (2006)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Prabhu, B.S., Srinathan, K., Pandu Rangan, C.: Trading Players for Efficiency in Unconditional Multiparty Computation. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 342–353. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Sun, X., Yao, A.C.-C., Tartary, C.: Graph Design for Secure Multiparty Computation over Non-Abelian Groups. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 37–53. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yvo Desmedt
    • 1
  • Josef Pieprzyk
    • 2
  • Ron Steinfeld
    • 3
  1. 1.Dept. of Computer ScienceUniversity College LondonUK
  2. 2.Centre for Advanced Computing - Algorithms and Cryptography (ACAC) Dept. of ComputingMacquarie UniversityNorth RydeAustralia
  3. 3.Clayton School of Information TechnologyMonash UniversityClaytonAustralia

Personalised recommendations