Advertisement

Time-Specific Encryption from Forward-Secure Encryption

  • Kohei Kasamatsu
  • Takahiro Matsuda
  • Keita Emura
  • Nuttapong Attrapadung
  • Goichiro Hanaoka
  • Hideki Imai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7485)

Abstract

Paterson and Quaglia (SCN 2010) proposed the concept of time-specific encryption (TSE) and its efficient constructions. TSE is a type of public key encryption with additional functionality where an encryptor can specify a suitable time interval, meaning that the ciphertexts may only be decrypted within this time interval. In this work, we propose a new methodology for designing efficient TSE scheme by using forward-secure encryption (FSE), and based on this methodology, we present a specific TSE scheme using Boneh-Boyen-Goh FSE, and a generic construction from any FSE. Our proposed TSE schemes are practical in all aspects with regard to computational costs and data sizes. The sizes of the ciphertext and the public parameter in our schemes are significantly smaller than those in previous schemes in an asymptotic sense.

Keywords

Generic Construction Random Oracle Public Parameter Broadcast Encryption Bilinear Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, R.: Two remarks on public key cryptology. Invited Lecture, ACM CCS 1997 (1997), http://www.cyphernet.org/cyphernomicon/chapter14/14.5.html
  2. 2.
    Attrapadung, N., Imai, H.: Graph-Decomposition-Based Frameworks for Subset-Cover Broadcast Encryption and Efficient Instantiations. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 100–120. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical Identity Based Encryption with Constant Size Ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Boneh, D., Boyen, X., Goh, E.J.: Hierarchical identity based encryption with constant size ciphertext. Full version of [3]. Cryptology ePrint Archive: Report 2005/015 (2005)Google Scholar
  5. 5.
    Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Boneh, D., Gentry, C., Waters, B.: Collusion Resistant Broadcast Encryption with Short Ciphertexts and Private Keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 258–275. Springer, Heidelberg (2005)Google Scholar
  7. 7.
    Canetti, R., Halevi, S., Katz, J.: A Forward-secure Public-key Encryption Scheme. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 646–646. Springer, Heidelberg (2003)Google Scholar
  8. 8.
    Cathalo, J., Libert, B., Quisquater, J.J.: Efficient and Non-interactive Timed-Release Encryption. In: Qing, S., Mao, W., López, J., Wang, G. (eds.) ICICS 2005. LNCS, vol. 3783, pp. 291–303. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Chan, A.C.F., Blake, I.F.: Scalable, server-passive, user-anonymous timed release cryptography. In: Proceedings. 25th IEEE International Conference on ICDCS 2005, pp. 504–513. IEEE (2005)Google Scholar
  10. 10.
    Cheon, J.H., Hopper, N., Kim, Y., Osipkov, I.: Provably secure timed-release public key encryption. ACM Trans. Inf. Syst. Secure. 11(2) (2008)Google Scholar
  11. 11.
    Chow, S., Roth, V., Rieffel, E.: General Certificateless Encryption and Timed-Release Encryption. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 126–143. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Dent, A., Tang, Q.: Revisiting the Security Model for Timed-Release Encryption with Pre-open Capability. In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS, vol. 4779, pp. 158–174. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Dodis, Y., Katz, J.: Chosen-Ciphertext Security of Multiple Encryption. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 188–209. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Emura, K., Miyaji, A., Omote, K.: Adaptive Secure-Channel Free Public-Key Encryption with Keyword Search Implies Timed Release Encryption. In: Lai, X., Zhou, J., Li, H. (eds.) ISC 2011. LNCS, vol. 7001, pp. 102–118. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Fiat, A., Naor, M.: Broadcast Encryption. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)Google Scholar
  16. 16.
    Gentry, C.: Practical Identity-Based Encryption Without Random Oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Gentry, C., Waters, B.: Adaptive Security in Broadcast Encryption Systems (with Short Ciphertexts). In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 171–188. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Hwang, Y., Yum, D., Lee, P.: Timed-Release Encryption with Pre-open Capability and Its Application to Certified E-mail System. In: Zhou, J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 344–358. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Matsuda, T., Nakai, Y., Matsuura, K.: Efficient Generic Constructions of Timed-Release Encryption with Pre-open Capability. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 225–245. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    May, T.: Time-release crypto (1993) (manuscript), http://www.cyphernet.org/cyphernomicon/chapter14/14.5.html
  21. 21.
    Nakai, Y., Matsuda, T., Kitada, W., Matsuura, K.: A Generic Construction of Timed-Release Encryption with Pre-open Capability. In: Takagi, T., Mambo, M. (eds.) IWSEC 2009. LNCS, vol. 5824, pp. 53–70. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Paterson, K., Quaglia, E.: Time-Specific Encryption. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 1–16. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  23. 23.
    Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release crypto. Technical Report MIT/LCS/TR-684 (1996)Google Scholar
  24. 24.
    Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  25. 25.
    Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. 26.
    Waters, B.: Dual System Encryption: Realizing Fully Secure IBE and HIBE under Simple Assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  27. 27.
    Zhang, R., Hanaoka, G., Shikata, J., Imai, H.: On the Security of Multiple Encryption or CCA-security+CCA-security=CCA-security? In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 360–374. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Kohei Kasamatsu
    • 1
  • Takahiro Matsuda
    • 2
  • Keita Emura
    • 3
  • Nuttapong Attrapadung
    • 2
  • Goichiro Hanaoka
    • 2
  • Hideki Imai
    • 1
  1. 1.Chuo UniversityJapan
  2. 2.National Institute of Advanced Industrial Science and TechnologyJapan
  3. 3.National Institute of Information and Communications TechnologyJapan

Personalised recommendations