Soft Computing Techniques Applied to a Case Study of Air Quality in Industrial Areas in the Czech Republic

  • Ángel Arroyo
  • Emilio Corchado
  • Verónica Tricio
  • Laura García-Hernández
  • Václav Snášel
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 188)


This multidisciplinary research analyzes the atmospheric pollution conditions of two different places in Czech Republic. The case study is based on real data provided by the Czech Hydrometeorological Institute along the period between 2006 and 2010. Seven variables with atmospheric pollution information are considered. Different Soft Computing models are applied to reduce the dimensionality of this data set and show the variability of the atmospheric pollution conditions among the two places selected, as well as the significant variability of the air quality along the time.


Artificial neural networks soft computing meteorology statistical models environmental conditions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Corchado, E., Herrero, E.: Neural visualization of network traffic data for intrusion detection. Appl. Soft Comput. 11(2), 2042–2056 (2011)CrossRefGoogle Scholar
  2. 2.
    Corchado, E., Arroyo, A., Tricio, V.: Soft computing models to identify typical meteorological days. Logic Journal of the IGPL 19(2), 373–383 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Vaidya, V., Park, J.H., Arabnia, H.R., Pedrycz, W., Peng, S.: Bio-inspired computing for hybrid information technology. Soft. Comput. 16(3), 367–368 (2012)CrossRefGoogle Scholar
  4. 4.
    Maqsood, I., Abraham, A.: Weather analysis using ensemble of connectionist learning paradigms. Applied Soft Computing 7(3), 995–1004 (2007)CrossRefGoogle Scholar
  5. 5.
    Wang, W., Men, C., Lu, W.: Online prediction model based on support vector machine. Neurocomputing 71(4–6), 550–558 (2008)CrossRefGoogle Scholar
  6. 6.
    Chattopadhyay, G., Chattopadhyay, S., Chakraborthy, P.: Principal component analysis and neurocomputing-based models for total ozone concentration over different urban regions of India. Theoretical and Applied Climatology, 1–11 (December 2011)Google Scholar
  7. 7.
    Glezakos, T.J., Tsiligiridis, T.A., Iliadis, L.S., Yialouris, C.P., Maris, F.P., Ferentinos, K.P.: Feature extraction for time-series data: An artificial neural network evolutionary training model for the management of mountainous watersheds. Neurocomputing 73(1–3), 49–59 (2009)CrossRefGoogle Scholar
  8. 8.
    Arroyo, A., Corchado, E., Tricio, V.: Soft computing models to analyze atmospheric pollution issues. Logic Jnl. IGPL (February 2011)Google Scholar
  9. 9.
    Arroyo, A., Corchado, E., Tricio, V.: A climatologycal analysis by means of soft computing models. Advances in Intelligent and Soft Computing 87, 551–559 (2011)CrossRefGoogle Scholar
  10. 10.
  11. 11.
    Dvorska, A., Lammel, G., Klanova, J., Holoubek, I.: Kosetice, Czech Republic-ten years of air pollution monitoring and four years of evaluating the origin of persistent organic pollutants. Environmental Pollution 156(2), 403–408 (2008)CrossRefGoogle Scholar
  12. 12.
    Pearson, K.: On lines and planes of closest fit to systems of points in space. Philosophical Magazine 2(2), 559–572 (1901)Google Scholar
  13. 13.
    Oja, J., Ogawa, E., Wangviwattana, H.: Principal component analysis by homogeneous neural networks, Part I: The weighted subspace criterion. IEICE Trans. Inf. Syst. E75-D(3), 366–375 (1992)Google Scholar
  14. 14.
    Oja, E.: Neural networks, principal components, and subspaces. International Journal of Neural Systems 1(1), 61–68 (1989)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Balasubramanian, M., Schwartz, E.L.: The isomap algorithm and topological stability. Science 295(5552), 7 (2002)CrossRefGoogle Scholar
  16. 16.
    Cox, A.A., Cox, T.F.: Multidimensional Scaling. In: Handbook of data visualization. Springer Handbooks of Computational Statistics, vol. III, pp. 315–347 (2008)Google Scholar
  17. 17.
    Huang, S., Cai, C., Zhang, Y.: Dimensionality Reduction by Using Sparse Reconstruction Embedding. In: Qiu, G., Lam, K.M., Kiya, H., Xue, X.-Y., Kuo, C.-C.J., Lew, M.S. (eds.) PCM 2010, Part II. LNCS, vol. 6298, pp. 167–178. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Shankar, N.R., Sireesha, V.: Using Modified Dijkstra’s Algorithm for Critical Path Method in a Project Network. International Journal of Computational and Applied Mathematics 5(2), 217–225 (2010)MathSciNetGoogle Scholar
  19. 19.
    Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Saul. Science 290(5500), 2323–2326 (2000)Google Scholar
  20. 20.
    Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Statistics and Computing 14(3), 199–222 (2004)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Annual Tabular Overview, (accessed: April 19, 2012)
  22. 22.
    Networks of Ambient Air Quality Monitoring Stations, (accessed: May 08, 2012)
  23. 23.
    International Air Quality, (accessed: May 09, 2012)
  24. 24.
    Stations with annual average conc., (accessed: April 19, 2012)

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ángel Arroyo
    • 1
  • Emilio Corchado
    • 2
    • 5
    • 6
  • Verónica Tricio
    • 3
  • Laura García-Hernández
    • 4
  • Václav Snášel
    • 5
    • 6
  1. 1.Department of Civil EngineeringUniversity of BurgosBurgosSpain
  2. 2.Departmento de Informática y AutomáticaUniversity of SalamancaSalamancaSpain
  3. 3.Department of PhysicsUniversity of BurgosBurgosSpain
  4. 4.Area of Project EngineeringUniversity of CordobaCordobaSpain
  5. 5.Department of Computer ScienceVSB-Technical University of OstravaOstravaCzech Republic
  6. 6.IT4InnovationsOstravaCzech Republic

Personalised recommendations