A Performance Study of Concentrating Photovoltaic Modules Using Neural Networks: An Application with CO2RBFN

  • Antonio J. Rivera
  • B. García-Domingo
  • M. J. del Jesus
  • J. Aguilera
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 188)

Abstract

Concentrating Photovoltaic (CPV) technology attempts to optimize the efficiency of solar energy production systems and models for determining the exact module performance are needed. In this paper, a CPV module is studied by means of atmospheric conditions obtained using an automatic test and measuring system. CO2RBFN, a cooperative-competitive algorithm for the design of radial basis neural networks, is adapted and applied to these data obtaining a model with a good level of accuracy on test data, improving the results obtained by other methods considered in the experimental comparison. These initial results are promising and the obtained model could be used to work out the maximum power at the CPV reporting conditions and to analyze the performance of the module under any conditions and at any moment.

Keywords

Concentrating Photovoltaic Technology Neural Networks Evolutionary Computation Soft-Computing Regression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alcalá-Fdez, J., Sánchez, L., García, S., del Jesus, M.J., Ventura, S., Garrell, J.M., Otero, J., Romero, C., Bacardit, J., Rivas, V.M., Fernández, J.C., Herrera, F.: KEEL: A Software Tool to Assess Evolutionary Algorithms to Data Mining Problems. Soft Computing 13(3), 307–318 (2009)CrossRefGoogle Scholar
  2. 2.
    ASTM E-2527-09, Standard test method for electrical performance of concentrator terrestrial photovoltaic modules and systems under natural sunlight. ASTM Int. West Conshohocken, PA, United States (2009)Google Scholar
  3. 3.
    Buchtala, O., Klimek, M., Sick, B.: Evolutionary optimization of radial basis function classifiers for data mining applications. IEEE Trans. Syst. Man Cybern B 35(5), 928–947 (2005)CrossRefGoogle Scholar
  4. 4.
    De Silva, D., Xinghuo, Y., Alahakoon, D., Holmes, G.: A Data Mining Framework for Electricity Consumption Analysis From Meter Data. IEEE Transactions on Industrial Informatics 7(3), 399–407 (2011)CrossRefGoogle Scholar
  5. 5.
    Golub, G., Van Loan, C.: Matrix computations, 3rd edn. J. Hopkins University Press (1996)Google Scholar
  6. 6.
    Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D.: Solar cell efficiency tables (version 38). Progress in Photovoltaics: Research and Applications 19(5), 565–572 (2011)CrossRefGoogle Scholar
  7. 7.
    IDEA Group, University of Jaén, Propuesta de un marco regulatorio para la concentración fotovoltaica en España (2010-2020) ISBN:978-84-692-9987Google Scholar
  8. 8.
    IDEA Group, University of Jaén, The CPV challenge (Part I): Achieving Grid Parity. First Conferences Ltd., CPV Today (2009)Google Scholar
  9. 9.
    IEC 62108, Concentrator Photovoltaics (CPV) modules and assemblies-design qualification and type approval. Edition 1.0 (2007)Google Scholar
  10. 10.
    Izgi, D., Öztopal, A., Yerli, B., Kaymak, M.K., Şahin, A.D.: Short-mid-term solar power prediction by using artificial neural networks. Solar Energy (In Press)Google Scholar
  11. 11.
    Li, K., Su, H., Chu, J.: Forecasting building energy consumption using neural networks and hybrid neuro-fuzzy system: A comparative study. Energy and Buildings 43(10), 2893–2899 (2011)CrossRefGoogle Scholar
  12. 12.
    Moller, F.: A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks 6, 525–533 (1990)CrossRefGoogle Scholar
  13. 13.
    Muller, M., Marion, B., Rodriguez, J., Kurtz, S.: Minimizing variation in outdoor CPV power ratings. In: 7th International Conference on Concentrating Photovoltaic Systems (CPV-7). AIP Conference Proceedings, vol. 1407, pp. 336–340 (2011)Google Scholar
  14. 14.
    Pehar, G., Ferrer Rodríguez, J.P., Siefer, G., Bett, A.W.: A method for using CPV modules as temperature sensors and its application to rating procedures. Sol. Energy Mater. Sol. Cells 95(10), 2734–2744 (2011)CrossRefGoogle Scholar
  15. 15.
    Pérez-Godoy, M., Rivera Rivas, A.J., Berlanga, F.J., del Jesus, M.J.: CO2RBFN: an evolutionary cooperative–competitive RBFN design algorithm for classification problems. Soft Computing 14, 953–971 (2010)CrossRefGoogle Scholar
  16. 16.
    Platt, C.J.: A resource-allocating network for function interpolation. Neural Computation 3(2), 213–225 (1991)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Rubio, F., Martínez, M., Perea, J., Sánchez, D., Banda, P.: Comparison of the different CPV rating procedures: Real measurements in ISFOC. In: 34th IEEE Photovoltaic Specialist Conference, Philadelphia. Art. 5411163, pp. 000800–000805 (2009)Google Scholar
  18. 18.
    Rubio, F., Martínez, M., Perea, J., Sánchez, D., Banda, P.: Field test on CPV ISFOC plants. In: Proc. of SPIE - The International Society for Optical Engineering, vol. 7407, art: 740707 (2009)Google Scholar
  19. 19.
    Rustagi, J.S.: Optimization Techniques in Statistics. Academic Press (1994)Google Scholar
  20. 20.
    Salas, V., Olias, E.: Overview of the photovoltaic technology status and perspective in Spain. Renewable and Sustainable Energy Reviews 13(5), 1049–1057 (2009)CrossRefGoogle Scholar
  21. 21.
    Scholkopf, B., Smola, A.J., Williamson, R., Bartlett, P.L.: New support vector algorithms. Neural Computation 12(5), 1207–1245 (2000)CrossRefGoogle Scholar
  22. 22.
    Suganthi, L., Samuel, A.: Energy models for demand forecasting, A review. Renewable and Sustainable Energy Reviews 16(2), 1223–1240 (2012)CrossRefGoogle Scholar
  23. 23.
    Xia, C., Wang, J., McMenemy, K.: Short, medium and long term load forecasting model and virtual load forecaster based on radial basis function neural networks. International Journal of Electrical Power and Energy Systems 32(7), 743–750 (2010)CrossRefGoogle Scholar
  24. 24.
    Wang, L.X., Mendel, J.J.: Generating fuzzy rules by learning from examples. IEEE Transactions on Systems, Man, and Cybernetics 22(6), 1414–1427 (1992)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Widrow, B., Lehr, M.A.: 30 Years of adaptive neural networks: perceptron, madaline and backpropagation. Proceedings of the IEEE 78(9), 1415–1442 (1990)CrossRefGoogle Scholar
  26. 26.
    Zeng, J., Qiao, W.: Short-term solar power prediction using an RBF neural network. IEEE Power and Energy Society General Meeting, art. no. 6039204 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Antonio J. Rivera
    • 1
    • 2
  • B. García-Domingo
    • 1
    • 2
  • M. J. del Jesus
    • 1
    • 2
  • J. Aguilera
    • 1
    • 2
  1. 1.Dept. of Computer ScienceUniversity of JaénJaenSpain
  2. 2.Dept. of Electronics and Automation EngineeringUniversity of JaénJaenSpain

Personalised recommendations