Metaheuristically Optimized Multicriteria Clustering for Medium-Scale Networks

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 188)

Abstract

We present a highly scalable metaheuristic approach to complex network clustering. Our method uses a multicriteria construction procedure (MCP), controlled by adaptable constraints of local density and local connectivity. The input of the MCP - the permutation of vertices, is evolved using a metaheuristic based on local search. Our approach provides a favorable computational complexity of the MCP for sparse graphs and an adaptability of the constraints, since the criteria of a ”good clustering” are still not generally agreed upon in the literature. Experimental verification, regarding the quality and running time, is performed on several well-known network clustering instances, as well as on real-world social network data.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boyer, F., Morgat, A., Labarre, L., Pothier, J., Viari, A.: Syntons, metabolons and interactons: an exact graph-theoretical approach for exploring neighbourhood between genomic and functional data. Bioinformatics 21(23), 4209–4215 (2005)CrossRefGoogle Scholar
  2. 2.
    Brélaz, D.: New methods to color vertices of a graph. Communications of the ACM 22, 251–256 (1979)MATHCrossRefGoogle Scholar
  3. 3.
    Chalupa, D.: On the Ability of Graph Coloring Heuristics to Find Substructures in Social Networks. Information Sciences and Technologies, Bulletin of ACM Slovakia 3(2), 51–54 (2011)Google Scholar
  4. 4.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press (2009)Google Scholar
  5. 5.
    Drineas, P., Frieze, A., Kannan, R., Vempala, S., Vinay, V.: Clustering in large graphs and matrices. Machine Learning 56, 9–33 (2004)MATHCrossRefGoogle Scholar
  6. 6.
    Gao, L., Sun, P., Song, J.: Clustering algorithms for detecting functional modules in protein interaction networks. J. Bioinformatics and Computational Biology 7(1), 217–242 (2009)CrossRefGoogle Scholar
  7. 7.
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proceedings of the National Academy of Sciences, USA 99, 8271–8276 (2002)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Glover, F.: Tabu search - part i. INFORMS Journal on Computing 1(3), 190–206 (1989)MATHCrossRefGoogle Scholar
  9. 9.
    Hubert, L., Arabie, P.: Comparing partitions. Journal of Classification 2, 193–218 (1985)CrossRefGoogle Scholar
  10. 10.
    Karp, R.M.: Reducibility among combinatorial problems. In: Proceedings of a Symposium on Complexity of Computer Computations, pp. 85–103 (1972)Google Scholar
  11. 11.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Newman, M.E.J.: Detecting community structure in networks. The European Physical Journal B 38, 321–330 (2004)CrossRefGoogle Scholar
  13. 13.
    Pattillo, J., Youssef, N., Butenko, S.: Clique Relaxation Models in Social Network Analysis. In: Handbook of Optimization in Complex Networks, pp. 143–162 (2012)Google Scholar
  14. 14.
    Rothenberg, R.B., Potterat, J.J., Woodhouse, D.E.: Personal Risk Taking and the Spread of Disease: Beyond Core Groups. The Journal of Infectious Diseases, 174(suppl. 2), S144–S149 (1996)CrossRefGoogle Scholar
  15. 15.
    Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice Hall, Upper Saddle River (2003)Google Scholar
  16. 16.
    Schaeffer, S.E.: Stochastic Local Clustering for Massive Graphs. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 354–360. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Schaeffer, S.E.: Graph clustering. Computer Science Review 1(1), 27–64 (2007)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Sun, J., Xie, Y., Zhang, H., Faloutsos, C.: Less is more: Sparse graph mining with compact matrix decomposition. Stat. Anal. Data Min. 1, 6–22 (2008)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Tang, J., Wang, T., Wang, J., Lu, Q., Li, W.: Using complex network features for fast clustering in the web. In: Proceedings of the 20th International Conference Companion on World Wide Web, WWW 2011, pp. 133–134. ACM, New York (2011)CrossRefGoogle Scholar
  20. 20.
    Černý, V.: Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. Journal of Optimization Theory and Applications 45, 41–51 (1985)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Šíma, J., Schaeffer, S.E.: On the NP-Completeness of Some Graph Cluster Measures. In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2006. LNCS, vol. 3831, pp. 530–537. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Watts, D.J.: Small Worlds. Princeton University Press (1999)Google Scholar
  23. 23.
    Zachary, W.W.: An information flow model for conflict and fission in small groups. Journal of Anthropological Research 33, 452–473 (1977)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of Applied Informatics, Faculty of Informatics and Information TechnologiesSlovak University of TechnologyBratislavaSlovakia

Personalised recommendations