Soft Computing Testing in Real Industrial Platforms for Process Intelligent Control

  • E. LarzabalEmail author
  • J. A. Cubillos
  • M. Larrea
  • E. Irigoyen
  • J. J. Valera
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 188)


By testing advanced control techniques based on Soft Computing into industrial platforms is possible to analyse the feasibility and reliability of these implementations for being subsequently used in real industrial processes. In many cases, this fact is not taken into account for several reasons concerning with the complexity of performing hardware implementations. Hence, simulation testing becomes the last step before showing an implemented solution. The main objective of this work is to give a step beyond for achieving a more realistic test of the Intelligent Control techniques. For this reason, a first approximation of a Genetic Algorithm controller (NSGA-II) is implemented, tested, studied and compared in the stages of the controller design, and simultaneously in different industrial platforms. Most relevant results obtained in software simulation and in Hardware In the Loop (HIL) implementation are finally shown and analysed.


Soft Computing Model Predictive Control Intelligent Control Nondominated Sort Genetic Algorithm Peripheral Component Interconnect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rudas, I.J., Fodor, J.: Intelligent systems. Proceedings of Int. J. of Computers, Communications & Control 3, 132–138 (2008)Google Scholar
  2. 2.
    Duch, W.: What is computational intelligence and where is it going. Challenges for Computational Intelligence 63, 1–13 (2007)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bonissone, P.P.: Soft computing: the convergence of emerging reasoning technologies. Soft Computing 1, 6–18 (1997)CrossRefGoogle Scholar
  4. 4.
    Sahin, S., Tolun, M., Hassanpour, R.: Hybrid expert systems: A survey of current approaches and applications. Expert Systems with Applications 39(4), 4609–4617 (2012)CrossRefGoogle Scholar
  5. 5.
    Saridakis, K., Dentsoras, A.: Soft computing in engineering design – a review. Advanced Engineering Informatics 22(2), 202–221 (2008)CrossRefGoogle Scholar
  6. 6.
    Fleming, P., Purshouse, R.: Evolutionary algorithms in control systems engineering: A survey. Control Engineering Practice 10(11), 1223–1241 (2002)CrossRefGoogle Scholar
  7. 7.
    Valera, J., Irigoyen, E., Gómez, V., Artaza, F., Larrea, M.: Intelligent multi-objective nonlinear model predictive control (imo-nmpc): Towards the ‘on-line’ optimization of highly complex control problems. Expert Systems with Applications 39(7), 6527–6540 (2012)CrossRefGoogle Scholar
  8. 8.
    Bose, B.K.: Neural network applications in power electronics and motor drives- an introduction and perspective. IEEE Trans. on Industrial Electronics 54(1), 14–33 (2007)CrossRefGoogle Scholar
  9. 9.
    Precup, R.E., Hellendoorn, H.: A survey on industrial applications of fuzzy control. Computers in Industry 62(3), 213–226 (2011)CrossRefGoogle Scholar
  10. 10.
    Pareto, V.: Cours d’Économie Politique, vol. I & II. Université de Lausanne (1897)Google Scholar
  11. 11.
    Deb, K.: Multi-objective optimization using evolutionary algorithms. John Wiley & Sons, Ltd. (2001)Google Scholar
  12. 12.
    Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation 2, 221–248 (1994)CrossRefGoogle Scholar
  13. 13.
    Toscano Pulido, G., Coello Coello, C.A.: The Micro Genetic Algorithm 2: Towards Online Adaptation in Evolutionary Multiobjective Optimization. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 252–266. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans. on Evolutionary Computation 6(2), 182–197 (2002)CrossRefGoogle Scholar
  15. 15.
    Laabidi, K., Bouani, F., Ksouri, M.: Multi-criteria optimization in nonlinear predictive control. Mathematics and Computers in Simulation 76(5-6), 363–374 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Narendra, K.S., Parthasarathy, K.: Identification and control of dynamical systems using neural networks. IEEE Trans Neural Networks 1(1), 4–27 (1990)CrossRefGoogle Scholar
  17. 17.
    Harris, C. (ed.): Advances in Intelligent Control. CRC Press (1994)Google Scholar
  18. 18.
    Hanselmann, H.: Hardware-in-the-loop simulation as a standard approach for development, customization, and production test of ecu’s. Technical Report 931953, SAE Int. (1993)Google Scholar
  19. 19.
    Kendall, I., Jones, R.: An investigation into the use of hardware-in-the-loop simulation testing for automotive electronic control systems. Control Engineering Practice 7(11) (1999)Google Scholar
  20. 20.
    Lu, B., Wu, X., Figueroa, H., Monti, A.: A low-cost real-time hardware-in-the-loop testing approach of power electronics controls. IEEE Trans. on Industrial Electronics 54(2) (2007)Google Scholar
  21. 21.
    Li, H., Steurer, M., Shi, K., Woodruff, S., Zhang, D.: Development of a unified design, test, and research platform for wind energy systems based on hardware-in-the-loop real-time simulation. IEEE Trans. on Industrial Electronics 53(4), 1144–1151 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • E. Larzabal
    • 1
    Email author
  • J. A. Cubillos
    • 1
  • M. Larrea
    • 1
  • E. Irigoyen
    • 1
  • J. J. Valera
    • 1
  1. 1.Intelligent Control Research GroupUniversity of the Basque Country (UPV/EHU)BilbaoSpain

Personalised recommendations