Advertisement

Gravitational Search Algorithm Design of Posicast PID Control Systems

  • P. B. de Moura OliveiraEmail author
  • E. J. Solteiro Pires
  • Paulo Novais
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 188)

Abstract

The gravitational search algorithm is proposed to design PID control structures. The controller design is performed considering the objectives of set-point tracking and disturbance rejection, minimizing the integral of the absolute error criterion. A two-degrees-of-freedom control configuration with a feed for-ward prefilter inserted outside the PID feedback loop is used to improve system performance for both design criteria. The prefilter used is a Posicast three-step shaper designed simultaneously with a PID controller. Simulation results are presented which show the merit of the proposed technique.

Keywords

Particle Swarm Optimization Disturbance Rejection Input Shaper Feedforward Controller Control Configuration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Åström, K.J., Hägglund, T.: The Future of PID Control. Control Engineering Practice 9(11), 1163–1175 (2001)CrossRefGoogle Scholar
  2. 2.
    Araki, M., Taguchi, H.: Two-Degree-of-Freedom PID Controllers. International Journal of Control Automation, and Systems 1(4), 401–411 (2003)Google Scholar
  3. 3.
    Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: A Gravitacional Search Algorithm. Information Sciences 179, 2232–2248 (2009)zbMATHCrossRefGoogle Scholar
  4. 4.
    Precup, R.E., David, R.C., Petriu, E.M., Preitl, S., Răda, M.C.: Gravitational Search Algorithms in Fuzzy Control Systems Tuning. Preprints of the 18th IFAC World Congress, pp. 13624–13629 (2011)Google Scholar
  5. 5.
    Khajehzadeh, M., Raihan Taha, M., El-Shafie, A., Eslami, M.: Search for critical failure surface in slope stability analysis by gravitational search algorithm. International Journal of the Physical Sciences 6(21), 5012–5021 (2011); Academic JournalsGoogle Scholar
  6. 6.
    Duman, S., Sonmez, Y., Guvenc, U., Yorukeren, N.: Application of Gravitational Search Algorithm for Optimal Reactive Power Dispatch Problem. In: IEEE Symposium Innovations in Intelligent Systems and Applications (INISTA), pp. 519–523 (2011)Google Scholar
  7. 7.
    Smith, O.J.M.: Posicast Control of Damped Oscillatory Systems. Proc. IRE 45(9), 1249–1255 (1957)CrossRefGoogle Scholar
  8. 8.
    Huey, J.R., Sorensen, K.L., Singhose, W.E.: Useful applications of closed-loop signal shaping controllers. Control Engineering Practice 16, 836–846 (2008)CrossRefGoogle Scholar
  9. 9.
    Tuttle, T.D.: Creatig Time-Optimal Commands for Linear Systems, PhD Thesis, MIT (1997)Google Scholar
  10. 10.
    Singer, N.C., Seering, W.P.: Preshaping command inputs to reduce system vibration. Journal of Dynamic Systems Measurement and Control 112(3), 76–82 (1990)CrossRefGoogle Scholar
  11. 11.
    Chang, P.H., Park, J.: A concurrent design of input shaping technique and a robust control for high-speed/high-precision control of a chip mounter. Control Engineering Practice 9(2001), 1279–1285 (2001)CrossRefGoogle Scholar
  12. 12.
    Hanus, K.M., Henrotte, J.L.: Conditioning technique, a general anti-windup and bumpless transfer method. Automatica 23(6), 729–739 (1987)zbMATHCrossRefGoogle Scholar
  13. 13.
    Moura Oliveira, P.B., Vrančić, D.: Underdamped Second-Order Systems Overshoot Control. Accepted for publication in the IFAC Conference on Advances in PID Control, PID 2012, Brecia (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • P. B. de Moura Oliveira
    • 1
    Email author
  • E. J. Solteiro Pires
    • 1
  • Paulo Novais
    • 2
  1. 1.Department of Engineering, School of Sciences and TechnologyINESC TEC - INESC Technology and Science (formerly INESC Porto)Vila RealPortugal
  2. 2.Departamento de InformáticaUniversidade do MinhoBragaPortugal

Personalised recommendations