Evolving an Indoor Robotic Localization System Based on Wireless Networks

  • Gustavo Pessin
  • Fernando S. Osório
  • Jefferson R. Souza
  • Fausto G. Costa
  • Jó Ueyama
  • Denis F. Wolf
  • Torsten Braun
  • Patrícia A. Vargas
Part of the Communications in Computer and Information Science book series (CCIS, volume 311)

Abstract

This work addresses the evolution of an Artificial Neural Network (ANN) to assist in the problem of indoor robotic localization. We investigate the design and building of an autonomous localization system based on information gathered from Wireless Networks (WN). The paper focuses on the evolved ANN which provides the position of one robot in a space, as in a Cartesian plane, corroborating with the Evolutionary Robotic research area and showing its practical viability. The proposed system was tested on several experiments, evaluating not only the impact of different evolutionary computation parameters but also the role of the transfer functions on the evolution of the ANN. Results show that slight variations in the parameters lead to huge differences on the evolution process and therefore in the accuracy of the robot position.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eberhart, R.C., Kennedy, J., Shi, Y.: Swarm Intelligence. M. Kaufmann (2001)Google Scholar
  2. 2.
    Elnahrawy, E., Li, X., Martin, R.: The limits of localization using signal strength: a comparative study. In: IEEE SECON, pp. 406–414 (2004)Google Scholar
  3. 3.
    Engelbrecht, A.P.: Fundamentals of Comp. Swarm Intelligence. Wiley (2005)Google Scholar
  4. 4.
    Espinace, P., Soto, A., Torres-Torriti, M.: Real-time robot localization in indoor environments using structural information. In: IEEE LARS (2008)Google Scholar
  5. 5.
    Fogel, D.: Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. IEEE Press Series on Computational Intelligence (2006)Google Scholar
  6. 6.
    Fu, S., Hou, Z., Yang, G.: An indoor navigation system for autonomous mobile robot using wsn. In: Networking, Sensing and Control, pp. 227–232 (2009)Google Scholar
  7. 7.
    Ladd, A., Bekris, K., Rudys, A., Wallach, D., Kavraki, L.: On the feasibility of using wireless ethernet for indoor localization. IEEE Trans. on Robotics and Automation 20(3), 555–559 (2004)CrossRefGoogle Scholar
  8. 8.
    Martinelli, A.: The odometry error of a mobile robot with a synchronous drive system. IEEE Trans. on Robotics and Automation 18(3), 399–405 (2002)CrossRefGoogle Scholar
  9. 9.
    Mitchell, T.M.: Machine Learning. McGraw-Hill (1997)Google Scholar
  10. 10.
    Napier, A., Sibley, G., Newman, P.: Real-time bounded-error pose estimation for road vehicles using vision. In: IEEE Conf. on Intelligent Transp. Systems (2010)Google Scholar
  11. 11.
    Pessin, G., Osório, F.S., Ueyama, J., Souza, J.R., Wolf, D.F., Braun, T., Vargas, P.A.: Evaluating the impact of the number of access points in mobile robots localization using artificial neural networks. In: Proc. of the 5th International Conference on Communication System Software and Middleware, pp. 10:1–10:9 (2011)Google Scholar
  12. 12.
    Robles, J., Deicke, M., Lehnert, R.: 3d fingerprint-based localization for wireless sensor networks. In: Positioning Navigation and Communication, WPNC (2010)Google Scholar
  13. 13.
    Thrun, S., Fox, D., Burgard, W., Dellaert, F.: Robust monte carlo localization for mobile robots. Artificial Intelligence 128(1-2), 99–141 (2001)MATHCrossRefGoogle Scholar
  14. 14.
    Yao, X.: Evolving artificial neural networks. Proc. of IEEE 87(9), 1423–1447 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Gustavo Pessin
    • 1
    • 3
  • Fernando S. Osório
    • 1
  • Jefferson R. Souza
    • 1
  • Fausto G. Costa
    • 1
  • Jó Ueyama
    • 1
  • Denis F. Wolf
    • 1
  • Torsten Braun
    • 2
  • Patrícia A. Vargas
    • 3
  1. 1.Institute of Mathematics and Computer Science (ICMC)University of São Paulo (USP)São CarlosBrazil
  2. 2.Institute of Computer Science and Applied MathematicsUniversity of BernBernSwitzerland
  3. 3.School of Mathematical and Computer Sciences (MACS)Heriot-Watt UniversityEdinburghUK

Personalised recommendations