Advertisement

P Systems with Minimal Left and Right Insertion and Deletion

  • Rudolf Freund
  • Yurii Rogozhin
  • Sergey Verlan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7445)

Abstract

In this article we investigate the operations of insertion and deletion performed at the ends of a string. We show that using these operations in a P systems framework (which corresponds to using specific variants of graph control), computational completeness can even be achieved with the operations of left and right insertion and deletion of only one symbol.

Keywords

Regular Language Elementary Membrane Substitution Rule Skin Membrane Formal Language Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alhazov, A., Krassovitskiy, A., Rogozhin, Y.: Circular Post Machines and P Systems with Exo-insertion and Deletion. In: Gheorghe, M., Păun, G., Rozenberg, G., Salomaa, A., Verlan, S. (eds.) CMC 2011. LNCS, vol. 7184, pp. 73–86. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Alhazov, A., Krassovitskiy, A., Rogozhin, Y., Verlan, S.: P systems with minimal insertion and deletion. Theor. Comp. Sci. 412(1-2), 136–144 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Alhazov, A., Krassovitskiy, A., Rogozhin, Y., Verlan, S.: P systems with insertion and deletion exo-operations. Fundamenta Informaticae 110(1-4), 13–28 (2011)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Benne, R.: RNA Editing: The Alteration of Protein Coding Sequences of RNA. Ellis Horwood, Chichester (1993)Google Scholar
  5. 5.
    Biegler, F., Burrell, M.J., Daley, M.: Regulated RNA rewriting: Modelling RNA editing with guided insertion. Theor. Comput. Sci. 387(2), 103–112 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Castellanos, J., Martín-Vide, C., Mitrana, V., Sempere, J.M.: Solving NP-Complete Problems With Networks of Evolutionary Processors. In: Mira, J., Prieto, A.G. (eds.) IWANN 2001, Part I. LNCS, vol. 2084, pp. 621–628. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Csuhaj-Varjú, E., Salomaa, A.: Networks of Parallel Language Processors. In: Păun, G., Salomaa, A. (eds.) New Trends in Formal Languages. LNCS, vol. 1218, pp. 299–318. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  8. 8.
    Dassow, J., Manea, F.: Accepting hybrid networks of evolutionary processors with special topologies and small communication. In: Proc. DCFS 2010, pp. 68–77 (2010)Google Scholar
  9. 9.
    Dassow, J., Manea, F., Truthe, B.: On Normal Forms for Networks of Evolutionary Processors. In: Calude, C.S., Kari, J., Petre, I., Rozenberg, G. (eds.) UC 2011. LNCS, vol. 6714, pp. 89–100. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. Springer (1989)Google Scholar
  11. 11.
    Freund, R., Kogler, M., Rogozhin, Y., Verlan, S.: Graph-controlled insertion-deletion systems. In: McQuillan, I., Pighizzini, G. (eds.) Proc. of 12th Workshop on Descriptional Complexity of Formal Systems. EPTCS, vol. 31, pp. 88–98 (2010)Google Scholar
  12. 12.
    Freund, R., Oswald, M., Păun, A.: Gemmating P systems are computationally complete with four membranes. In: Ilie, L., Wotschke, D. (eds.) Pre-proceedings DCFS 2004, The University of Western Ontario, Rep. No. 619, pp. 191–203 (2004)Google Scholar
  13. 13.
    Galiukschov, B.: Semicontextual grammars. Logica i Matem. Lingvistika, 38–50 (1981) (in Russian)Google Scholar
  14. 14.
    Haussler, D.: Insertion and Iterated Insertion as Operations on Formal Languages. PhD thesis, Univ. of Colorado at Boulder (1982)Google Scholar
  15. 15.
    Haussler, D.: Insertion languages. Information Sciences 31(1), 77–89 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Ivanov, S., Verlan, S.: Random context and semi-conditional insertion-deletion systems. arXiv, CoRR abs/1112.5947 (2011)Google Scholar
  17. 17.
    Kari, L.: On Insertion and Deletion in Formal Languages. PhD thesis, University of Turku (1991)Google Scholar
  18. 18.
    Kari, L., Păun, G., Thierrin, G., Yu, S.: At the crossroads of DNA computing and formal languages: Characterizing RE using insertion-deletion systems. In: Proc. of 3rd DIMACS Workshop on DNA Based Computing, Philadelphia, pp. 318–333 (1997)Google Scholar
  19. 19.
    Krassovitskiy, A., Rogozhin, Y., Verlan, S.: Computational power of insertion-deletion (P) systems with rules of size two. Natural Computing 10(2), 835–852 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Marcus, S.: Contextual Grammars. Rev. Roum. Math. Pures Appl. 14, 1525–1534 (1969)zbMATHGoogle Scholar
  21. 21.
    Margenstern, M., Mitrana, V., Jesús Pérez-Jímenez, M.: Accepting Hybrid Networks of Evolutionary Processors. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA10. LNCS, vol. 3384, pp. 235–246. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Margenstern, M., Păun, G., Rogozhin, Y., Verlan, S.: Context-free insertion-deletion systems. Theor. Comput. Sci. 330(2), 339–348 (2005)zbMATHCrossRefGoogle Scholar
  23. 23.
    Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs (1967)zbMATHGoogle Scholar
  24. 24.
    Păun, G.: Membrane Computing. An Introduction. Springer (2002)Google Scholar
  25. 25.
    Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing: New Computing Paradigms. Springer (1998)Google Scholar
  26. 26.
    Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Computing. Oxford University Press (2010)Google Scholar
  27. 27.
    Petre, I., Verlan, S.: Matrix insertion-deletion systems. arXiv, CoRR abs/1012.5248 (2010)Google Scholar
  28. 28.
    The P systems Web page, http://ppage.psystems.eu/
  29. 29.
    Rozenberg, G., Salomaa, A.: Handbook of Formal Languages, vol. 3. Springer, Heidelberg (1997)zbMATHCrossRefGoogle Scholar
  30. 30.
    Verlan, S.: On minimal context-free insertion-deletion systems. J. of Automata, Languages and Combinatorics 12(1-2), 317–328 (2007)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Verlan, S.: Recent developments on insertion-deletion systems. Comp. Sci. J. of Moldova 18(2), 210–245 (2010)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Verlan, S.: Study of language-theoretic computational paradigms inspired by biology. Habilitation thesis, University of Paris Est (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Rudolf Freund
    • 1
  • Yurii Rogozhin
    • 2
  • Sergey Verlan
    • 3
  1. 1.Faculty of InformaticsVienna University of TechnologyViennaAustria
  2. 2.Institute of Mathematics and Computer ScienceAcademy of Sciences of MoldovaChişinăuMoldova
  3. 3.LACL, Département InformatiqueUniversité Paris EstCréteilFrance

Personalised recommendations