Genome Parameters as Information to Forecast Emergent Developmental Behaviors

  • Stefano Nichele
  • Gunnar Tufte
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7445)


In this paper we measure genomic properties in EvoDevo systems, to predict emergent phenotypic characteristic of artificial organisms. We describe and compare three parameters calculated out of the composition of the genome, to forecast the emergent behavior and structural properties of the developed organisms. The parameters are each calculated by including different genomic information. The genotypic information explored are: purely regulatory output, regulatory input and relative output considered independently and an overall parameter calculated out of genetic dependency properties. The goal of this work is to gain more knowledge on the relation between genotypes and the behavior of emergent phenotypes. Such knowledge will give information on genetic composition in relation to artificial developmental organisms, providing guidelines for construction of EvoDevo systems. A minimalistic developmental system based on Cellular Automata is chosen in the experimental work.


Development Cellular Computation Emergence Evolution Parameterization of Rule Spaces 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Binder, P.M.: A Phase Diagram for Elementary Cellular Automata. Complex Systems 7, 241–247 (1993)Google Scholar
  2. 2.
    Binder, P.M.: Parametric Ordering of Complex Systems. Physical Review E 49(3), 2023–2025 (1994)CrossRefGoogle Scholar
  3. 3.
    De Oliveira, G., De Oliveira, P., Omar, N.: Guidelines for Dynamics-based Parametrization of One-Dimensional Cellular Automata Rule Space. Complexity 6(2) (2001)Google Scholar
  4. 4.
    De Oliveira, G., De Oliveira, P., Omar, N.: Definition and Application of a Five-Parameter Characterization of One-Dimensional Cellular Automata Rule Space. Artificial Life 7, 277–301 (2001)CrossRefGoogle Scholar
  5. 5.
    Li, W.: Phenomenology of Nonlocal Cellular Automata. Journal of Statistical Physics 68(5-6), 829–882 (1992)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Tufte, G., Nichele, S.: On the correlations between developmental diversity and genomic composition. In: GECCO 2011, pp. 1507–1514. ACM (2011)Google Scholar
  7. 7.
    Nichele, S., Tufte, G.: Trajectories and Attractors as Specification for the Evolution of Behavior in Cellular Automata. In: IEEE CEC 2010, pp. 4441–4448 (2010)Google Scholar
  8. 8.
    Beer, R.D.: A dynamical systems perspective on agent-environment interaction. Artificial Intelligence 72(1-2), 173–215 (1995)CrossRefGoogle Scholar
  9. 9.
    Bentley, P.J., Kumar, S.: Three ways to grow designs: A comparison of embryogenies for an evolutionary design problem. In: GECCO 1999, pp. 35–43 (1999)Google Scholar
  10. 10.
    Cussat-Blanc, S., Luga, H., Duthen, Y.: From single cell to simple creature morphology and metabolism. In: Bullock, S., Noble, J., Watson, R., Bedau, M.A. (eds.) Artificial Life XI, pp. 134–141. MIT Press, Cambridge (2008)Google Scholar
  11. 11.
    Eggenberger, P.: Evolving morphologies of simulated 3d organisms based on differential gene expression. In: 4th Artificial Life Conference, pp. 205–213. MIT Press (1997)Google Scholar
  12. 12.
    Fleischer, K., Barr, A.H.: A simulation testbed for the study of multicellular development: The multiple mechanisms of morphogenesis. In: 3rd Artificial Life Conference, pp. 389–416. Addison-Wesley (1993)Google Scholar
  13. 13.
    Forrest, S.: Emergent Computation. MIT Press (1991)Google Scholar
  14. 14.
    Gordon, T.G.W.: Exploring models of development for evolutionary circuit design. In: IEEE CEC 2003, pp. 2050–2057. IEEE (2003)Google Scholar
  15. 15.
    Hall, B.K., Pearson, R.D., Müller, G.B.: Environment, development, and Evolution Toward a Synthesis. The Vienna Series in Theoretical Biology. MIT-Press (2004)Google Scholar
  16. 16.
    Kitano, H.: Building Complex Systems Using Developmental Process: An Engineering Approach. In: Sipper, M., Mange, D., Pérez-Uribe, A. (eds.) ICES 1998. LNCS, vol. 1478, pp. 218–229. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  17. 17.
    Kowaliw, T.: Measures of complexity for artificial embryogeny. In: GECCO 2008. ACM (2008)Google Scholar
  18. 18.
    Kowaliw, T., Grogono, P., Kharma, N.: Environment as a spatial constraint on the growth of structural form. In: GECCO 2007, New York, USA, pp. 1037–1044 (2007)Google Scholar
  19. 19.
    Kumar, S., Bentley, P.J.: Biologically Inspired Evolutionary Development. In: Tyrrell, A.M., Haddow, P.C., Torresen, J. (eds.) ICES 2003. LNCS, vol. 2606, pp. 57–68. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  20. 20.
    Langton, C.G.: Self-reproduction in cellular automata. Physica D 10, 135–144 (1984)CrossRefGoogle Scholar
  21. 21.
    Langton, C.G.: Computation at the edge of chaos: phase transitions and emergent computation. In: Forrest, S. (ed.) Emergent Computation, pp. 12–37. MIT Press (1991)Google Scholar
  22. 22.
    Lehre, P.K., Haddow, P.C.: Developmental mappings and phenotypic complexity. In: Congress on Evolutionary Computation (CEC 2003), pp. 62–68. IEEE (2003)Google Scholar
  23. 23.
    Miller, J.F.: Evolving a Self-Repairing, Self-Regulating, French Flag Organism. In: Deb, K., Tari, Z. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 129–139. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  24. 24.
    Miller, J.F., Banzhaf, W.: Evolving the program for a cell: from french flag to boolean circuits. In: Kumar, S., Bentley, P.J. (eds.) On Growth, Form and Computers, pp. 278–301. Elsevier Limited, Oxford (2003)CrossRefGoogle Scholar
  25. 25.
    Mitchell, M., Hraber, P.T., Crutchfield, J.P.: Revisiting the egde of chaos: Evolving cellular automata to perform computations. Complex Systems 7, 89–130 (1993)MATHGoogle Scholar
  26. 26.
    Packard, N.H.: Adaptation Toward the Edge of Chaos. In: Dynamic Patterns in Complex Systems, pp. 293–301. World Scientific (1988)Google Scholar
  27. 27.
    Tufte, G.: Evolution, development and environment toward adaptation through phenotypic plasticity and exploitation of external information. In: Bullock, S., Noble, J., Watson, R., Bedau, M.A. (eds.) Artificial Life XI, pp. 624–631. MIT Press, Cambridge (2008)Google Scholar
  28. 28.
    West-Eberhard, M.J.: Developmental Plasticity and Evolution. Oxford Univ. Press (2003)Google Scholar
  29. 29.
    Wolfram, S.: Universality and complexity in CA. Physica D 10(1-2), 1–35 (1984)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Stefano Nichele
    • 1
  • Gunnar Tufte
    • 1
  1. 1.Department of Computer and Information ScienceNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations