Tying Process Model Quality to the Modeling Process: The Impact of Structuring, Movement, and Speed

  • Jan Claes
  • Irene Vanderfeesten
  • Hajo A. Reijers
  • Jakob Pinggera
  • Matthias Weidlich
  • Stefan Zugal
  • Dirk Fahland
  • Barbara Weber
  • Jan Mendling
  • Geert Poels
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7481)


In an investigation into the process of process modeling, we examined how modeling behavior relates to the quality of the process model that emerges from that. Specifically, we considered whether (i) a modeler’s structured modeling style, (ii) the frequency of moving existing objects over the modeling canvas, and (iii) the overall modeling speed is in any way connected to the ease with which the resulting process model can be understood. In this paper, we describe the exploratory study to build these three conjectures, clarify the experimental set-up and infrastructure that was used to collect data, and explain the used metrics for the various concepts to test the conjectures empirically. We discuss various implications for research and practice from the conjectures, all of which were confirmed by the experiment.


business process modeling process model quality empirical research modeling process 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rittgen, P.: Quality and perceived usefulness of process models. In: Proc. SAC 2010, pp. 65–72. ACM (2010)Google Scholar
  2. 2.
    Mendling, J.: Metrics for Process Models. LNBIP, vol. 6. Springer, Heidelberg (2008)Google Scholar
  3. 3.
    Krogstie, J., Sindre, G., Jørgensen, H.: Process models representing knowledge for action: a revised quality framework. Eur. J. of Information Systems 15(1), 91–102 (2006)CrossRefGoogle Scholar
  4. 4.
    Becker, J., Rosemann, M., von Uthmann, C.: Guidelines of Business Process Modeling. In: van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.) Business Process Management. LNCS, vol. 1806, pp. 30–49. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Mendling, J., Reijers, H.A., van der Aalst, W.M.P.: Seven process modeling guidelines (7PMG). Information and Software Technology 52(2), 127–136 (2010)CrossRefGoogle Scholar
  6. 6.
    Mendling, J., Sánchez-González, L., García, F., La Rosa, M.: Thresholds for error probability measures of business process models. Journal of Systems and Software 85(5), 1188–1197 (2012)CrossRefGoogle Scholar
  7. 7.
    Reijers, H.A., Mendling, J.: A study into the factors that influence the understandability of business process models. IEEE Transactions on Systems, Man, and Cybernetics, Part A 41(3), 449–462 (2011)CrossRefGoogle Scholar
  8. 8.
    Pinggera, J., Zugal, S., Weber, B.: Investigating the process of process modeling with cheetah experimental platform. In: Proc. ER-POIS 2010, pp. 13–18 (2010)Google Scholar
  9. 9.
    Reijers, H.A., Mendling, J., Recker, J.C.: Business Process Quality Management. In: Handbook on Business Process Management, vol. 1, pp. 167–185. Springer (2010)Google Scholar
  10. 10.
    Gruhn, V., Laue, R.: Complexity metrics for business process models. In: Proc. ICBIS 2006, pp. 1–12 (2006)Google Scholar
  11. 11.
    Vanderfeesten, I., Cardoso, J., Mendling, J., Reijers, H.A., van der Aalst, W.M.P.: Quality metrics for business process models. In: BPM and Workflow Handbook, pp. 179–190 (2007)Google Scholar
  12. 12.
    Indulska, M., Recker, J., Rosemann, M., Green, P.: Business Process Modeling: Current Issues and Future Challenges. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009. LNCS, vol. 5565, pp. 501–514. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Soffer, P., Kaner, M., Wand, Y.: Towards Understanding the Process of Process Modeling: Theoretical and Empirical Considerations. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 357–369. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Crapo, A.W., Waisel, L.B., Wallace, W.A., Willemain, T.R.: Visualization and the process of modeling: a cognitive-theoretic view. In: Proc. ACM SIGKDD 2000, pp. 218–226 (2000)Google Scholar
  15. 15.
    Morris, W.T.: On the art of modeling. Management Science 13(12), 707–717 (1967)CrossRefGoogle Scholar
  16. 16.
    Pinggera, J., Zugal, S., Weidlich, M., Fahland, D., Weber, B., Mendling, J., Reijers, H.A.: Tracing the Process of Process Modeling with Modeling Phase Diagrams. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 370–382. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Pinggera, J., Zugal, S., Weber, B., Fahland, D., Weidlich, M., Mendling, J., Reijers, H.A.: How the Structuring of Domain Knowledge Helps Casual Process Modelers. In: Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand, Y. (eds.) ER 2010. LNCS, vol. 6412, pp. 445–451. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Breuker, D., Pfeiffer, D., Becker, J.: Reducing the variations in intra-and interorganizational business process modeling–an empirical evaluation. In: Proc. WI 2009, pp. 203–212 (2009)Google Scholar
  19. 19.
    Miller, G.: The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychological Review 63(2), 81–97 (1956)CrossRefGoogle Scholar
  20. 20.
    Paas, F., Tuovinen, J., Tabbers, H.: Cognitive load measurement as a means to advance cognitive load theory. Educational 38(1), 63–71 (2003)Google Scholar
  21. 21.
    Demarco, T., Lister, T.: Programmer performance and the effects of the workplace. In: Proc. ICSE 1985, pp. 268–272 (1985)Google Scholar
  22. 22.
    van der Aalst, W.M.P., van Hee, K.M., ter Hofstede, A.H.M., Sidorova, H., Verbeek, H.M.W., Voorhoeve, M., Wynn, M.T.: Soundness of workflow nets: classification, decidability, and analysis. Formal Aspects of Computing 23(3), 333–363 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    van der Aalst, W.M.P., et al.: The application of Petri nets to workflow management. Journal of Circuits Systems and Computers 8(1), 21–66 (1998)CrossRefGoogle Scholar
  24. 24.
    Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process models in BPMN. Information and Software Technology 50(12), 1281–1294 (2008)CrossRefGoogle Scholar
  25. 25.
    Wolf, K.: Generating Petri Net State Spaces. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 29–42. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  26. 26.
    Decker, G., Mendling, J.: Process instantiation. Data & Knowledge Engineering 68(9), 777–792 (2009)CrossRefGoogle Scholar
  27. 27.
    OMG: Business Process Model and Notation (BPMN) version 2.0 (2011)Google Scholar
  28. 28.
    McGill, R., Tukey, J., Larsen, W.A.: Variations of box plots. The American Statistician 32(1), 12–16 (1978)Google Scholar
  29. 29.
    Cegielski, C.: What makes a good programmer? Communications of the ACM 49(10), 73–75 (2006)CrossRefGoogle Scholar
  30. 30.
    Vanhatalo, J., Völzer, H., Leymann, F.: Faster and More Focused Control-Flow Analysis for Business Process Models Through SESE Decomposition. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 43–55. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  31. 31.
    Laue, R., Mendling, J.: The Impact of Structuredness on Error Probability of Process Models. In: Kaschek, R., Kop, C., Steinberger, C., Fliedl, G. (eds.) UNISCON 2008. LNBIP, vol. 5, pp. 585–590. Springer, Heidelberg (2008)Google Scholar
  32. 32.
    Lumley, T., Diehr, P., Emerson, S., Chen, L.: The importance of the normality assumption in large public health data sets. Annual Review of Public Health 23, 151–169 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jan Claes
    • 1
  • Irene Vanderfeesten
    • 2
  • Hajo A. Reijers
    • 2
  • Jakob Pinggera
    • 3
  • Matthias Weidlich
    • 4
  • Stefan Zugal
    • 3
  • Dirk Fahland
    • 2
  • Barbara Weber
    • 3
  • Jan Mendling
    • 5
  • Geert Poels
    • 1
  1. 1.Ghent UniversityBelgium
  2. 2.Eindhoven University of TechnologyThe Netherlands
  3. 3.University of InnsbruckAustria
  4. 4.Technion - Israel Institute of TechnologyIsrael
  5. 5.Wirtschaftsuniversität WienAustria

Personalised recommendations