Isotactics as a Foundation for Alignment and Abstraction of Behavioral Models

  • Artem Polyvyanyy
  • Matthias Weidlich
  • Mathias Weske
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7481)


There are many use cases in business process management that require the comparison of behavioral models. For instance, verifying equivalence is the basis for assessing whether a technical workflow correctly implements a business process, or whether a process realization conforms to a reference process. This paper proposes an equivalence relation for models that describe behaviors based on the concurrency semantics of net theory and for which an alignment relation has been defined. This equivalence, called isotactics, preserves the level of concurrency of aligned operations. Furthermore, we elaborate on the conditions under which an alignment relation can be classified as an abstraction. Finally, we show that alignment relations induced by structural refinements of behavioral models are indeed behavioral abstractions.


Business Process Behavioral Model Business Process Management Business Process Model Alignment Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    OMG: Business Process Model and Notation (BPMN), Version 2.0 (January 2011)Google Scholar
  2. 2.
    van der Aalst, W.M.P.: Inheritance of Business Processes: A Journey Visiting Four Notorious Problems. In: Ehrig, H., Reisig, W., Rozenberg, G., Weber, H. (eds.) Petri Net Technology for Communication-Based Systems. LNCS, vol. 2472, pp. 383–408. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Polyvyanyy, A., Smirnov, S., Weske, M.: Business Process Model Abstraction. In: Handbook on Business Process Management 1, pp. 149–166. Springer (2010)Google Scholar
  4. 4.
    Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains, Part I. Theoretical Computer Science (TCS) 13, 85–108 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Heidelberg (1980)CrossRefGoogle Scholar
  6. 6.
    Park, D.: Concurrency and Automata on Infinite Sequences. In: Deussen, P. (ed.) GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)CrossRefGoogle Scholar
  7. 7.
    Liu, D.R., Shen, M.: Workflow modeling for virtual processes: An order-preserving process-view approach. Information Systems (IS) 28(6), 505–532 (2003)zbMATHCrossRefGoogle Scholar
  8. 8.
    Polyvyanyy, A., Smirnov, S., Weske, M.: The Triconnected Abstraction of Process Models. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 229–244. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Dijkman, R.M., Dumas, M., García-Bañuelos, L., Käärik, R.: Aligning business process models. In: EDOC, pp. 45–53. IEEE CS (2009)Google Scholar
  10. 10.
    Weidlich, M., Dijkman, R., Mendling, J.: The ICoP Framework: Identification of Correspondences between Process Models. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051, pp. 483–498. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Lohmann, N., Verbeek, E., Dijkman, R.: Petri Net Transformations for Business Processes – A Survey. In: Jensen, K., van der Aalst, W.M.P. (eds.) ToPNoc II. LNCS, vol. 5460, pp. 46–63. Springer, Heidelberg (2009)Google Scholar
  12. 12.
    Goltz, U., Reisig, W.: The non-sequential behavior of Petri nets. Information and Control 57(2/3), 125–147 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Petri, C.A.: Non-Sequential Processes. GMD ISF. Gesellschaft für Mathematik und Datenverarbeitung (1977)Google Scholar
  14. 14.
    Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB J. 10(4), 334–350 (2001)zbMATHCrossRefGoogle Scholar
  15. 15.
    Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  16. 16.
    Noy, N.F., Klein, M.C.A.: Ontology evolution: Not the same as schema evolution. Knowl. Inf. Syst. 6(4), 428–440 (2004)CrossRefGoogle Scholar
  17. 17.
    Rull, G., Farré, C., Teniente, E., Urpí, T.: Validation of mappings between schemas. Data Knowl. Eng. 66(3), 414–437 (2008)CrossRefGoogle Scholar
  18. 18.
    Best, E., Devillers, R.R., Kiehn, A., Pomello, L.: Concurrent bisimulations in Petri nets. Acta Informatica (ACTA) 28(3), 231–264 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Kühne, T.: Matters of (meta-)modeling. Softw. and Syst. Mod. 5(4), 369–385 (2006)CrossRefGoogle Scholar
  20. 20.
    Holschke, O., Rake, J., Levina, O.: Granularity as a Cognitive Factor in the Effectiveness of Business Process Model Reuse. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 245–260. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    van der Aalst, W.M.P.: The application of Petri nets to workflow management. Journal of Circuits, Systems, and Computers (JCSC) 8(1), 21–66 (1998)CrossRefGoogle Scholar
  22. 22.
    Polyvyanyy, A., Vanhatalo, J., Völzer, H.: Simplified Computation and Generalization of the Refined Process Structure Tree. In: Bravetti, M., Buttan, T. (eds.) WS-FM 2010. LNCS, vol. 6551, pp. 25–41. Springer, Heidelberg (2011)Google Scholar
  23. 23.
    Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the IEEE 77(4), 541–580 (1989)CrossRefGoogle Scholar
  24. 24.
    van Glabbeek, R.J.: The Linear Time-Branching Time Spectrum (Extended Abstract). In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 278–297. Springer, Heidelberg (1990)Google Scholar
  25. 25.
    van Glabbeek, R.J.: The Linear Time - Branching Time Spectrum II. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  26. 26.
    van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimulation semantics. J. ACM 43(3), 555–600 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Hidders, J., Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M., Verelst, J.: When are two workflows the same? In: CATS. CRPIT, vol. 41, pp. 3–11 (2005)Google Scholar
  28. 28.
    Pomello, L., Rozenberg, G., Simone, C.: A Survey of Equivalence Notions for Net Based Systems. In: Rozenberg, G. (ed.) APN 1992. LNCS, vol. 609, pp. 410–472. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  29. 29.
    Weidlich, M., Dijkman, R., Weske, M.: Deciding Behaviour Compatibility of Complex Correspondences between Process Models. In: Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 78–94. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  30. 30.
    Weidlich, M., Dijkman, R.M., Weske, M.: Behaviour equivalence and compatibility of business process models with complex correspondences. The Computer Journal (CJ) (in press, 2012)Google Scholar
  31. 31.
    Basten, T., van der Aalst, W.M.P.: Inheritance of behavior. J. Log. Algebr. Program. 47(2), 47–145 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Polyvyanyy, A., Smirnov, S., Weske, M.: Process model abstraction: A slider approach. In: EDOC, pp. 325–331. IEEE CS (2008)Google Scholar
  33. 33.
    Berthelot, G.: Checking Properties of Nets Using Transformation. In: Rozenberg, G. (ed.) APN 1985. LNCS, vol. 222, pp. 19–40. Springer, Heidelberg (1986)CrossRefGoogle Scholar
  34. 34.
    Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge University Press (1995)Google Scholar
  35. 35.
    Brauer, W., Gold, R., Vogler, W.: A Survey of Behaviour and Equivalence Preserving Refinements of Petri Nets. In: Rozenberg, G. (ed.) APN 1990. LNCS, vol. 483, pp. 1–46. Springer, Heidelberg (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Artem Polyvyanyy
    • 1
  • Matthias Weidlich
    • 2
  • Mathias Weske
    • 3
  1. 1.Queensland University of TechnologyBrisbaneAustralia
  2. 2.Technion - Israel Institute of TechnologyHaifaIsrael
  3. 3.Hasso Plattner Institute at the University of PotsdamPotsdamGermany

Personalised recommendations