Advertisement

A Recommendation Algorithm to Capture End-Users’ Tacit Knowledge

  • David Martinho
  • António Rito Silva
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7481)

Abstract

To capture knowledge workers’ tacit knowledge, while they are performing their work, we consider the use of an ad-hoc workflow system that does not leverage on any predefined model. To avoid the noisy divergence of ad-hoc executions of business processes, we propose a recommendation algorithm that promotes convergent behavior through a goal-driven strategy based on data instead of activity control flow.

Keywords

Recommendations Tacit Knowledge Data-driven Ad-hoc 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Martinho, D., Rito Silva, A.: Non-intrusive Capture of Business Processes Using Social Software. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 207–218. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Rito Silva, A., Rosemann, M.: Processpedia: an ecological environment for BPM stakeholders’ collaboration. Business Process Management Journal 18(1), 20–42 (2012)CrossRefGoogle Scholar
  3. 3.
    van der Aalst, W.M.P., Nikolov, A.: Mining e-mail messages: Uncovering interaction patterns and processes using e-mail logs. International Journal of Intelligent Information Technologies 4(3), 27–45 (2008)CrossRefGoogle Scholar
  4. 4.
    Vanderfeesten, I., Reijers, H., van der Aalst, W.M.P.: Product-based workflow support. Information Systems 36(2), 517–535 (2011)CrossRefGoogle Scholar
  5. 5.
    Petrusel, R., Vanderfeesten, I., Dolean, C.C., Mican, D.: Making Decision Process Knowledge Explicit Using the Decision Data Model. In: Abramowicz, W. (ed.) BIS 2011. LNBIP, vol. 87, pp. 172–184. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Dorn, C., Marín, C.A., Mehandjiev, N., Dustdar, S.: Self-learning Predictor Aggregation for the Evolution of People-Driven Ad-Hoc Processes. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 215–230. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Motahari-Nezhad, H.R., Bartolini, C.: Next Best Step and Expert Recommendation for Collaborative Processes in IT Service Management. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 50–61. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Schonenberg, H., Weber, B., van Dongen, B.F., van der Aalst, W.M.P.: Supporting Flexible Processes through Recommendations Based on History. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 51–66. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Haisjackl, C., Weber, B.: User Assistance during Process Execution - An Experimental Evaluation of Recommendation Strategies. In: zur Muehlen, M., Su, J. (eds.) BPM 2010 Workshops. LNBIP, vol. 66, pp. 134–145. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Barba, I., Weber, B., Del Valle, C.: Supporting the Optimized Execution of Business Processes through Recommendations. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 135–140. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Künzle, V., Weber, B., Reichert, M.: Object-aware business processes: Fundamental requirements and their support in existing approaches. International Journal of Information System Modeling and Design (IJISMD) 2(2), 19–46 (2011)CrossRefGoogle Scholar
  12. 12.
    Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Recommender Systems Handbook, pp. 217–253 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • David Martinho
    • 1
    • 2
  • António Rito Silva
    • 1
    • 2
  1. 1.ESW Software Engineering Group - INESC-IDPortugal
  2. 2.IST - Technical University of LisbonPortugal

Personalised recommendations