E-Learning Based on Metadata, Ontologies and Competence-Based Knowledge Space Theory

  • Dietrich Albert
  • Cord Hockemeyer
  • Michael D. Kickmeier-Rust
  • Alexander Nussbaumer
  • Christina M. Steiner
Part of the Communications in Computer and Information Science book series (CCIS, volume 295)


The 21st century is challenging the future educational systems with ‘twitch-speed’ societal and technological changes. The pace of (technological) innovations forces future education to fulfill the need of empowering people of all societal, cultural, and age groups the acquire competences and skills in real-time for demands and tasks we cannot even imagine at the moment. To realize that, we do need smart novel educational technologies that can support the learners on an individual basis and accompany them during a lifelong personal learning and development history. This paper gives some brief insights in approaches to adaptive education based on sound psycho-pedagogical foundations and current technologies.


Competence-based Knowledge Space Theory e-learning systems ontology game-based learning self-regulated learning adaptivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albert, D., Held, T.: Establishing knowledge spaces by systematical problem construction. In: Albert, D. (ed.) Knowledge Structures, pp. 78–112. Springer, New York (1994)Google Scholar
  2. Albert, D., Hockemeyer, C.: Applying demand analysis of a set of test problems for developing an adaptive course. In: Proceedings of the International Conference on Computers in Education ICCE 2002, pp. 69–70. IEEE Computer Society, Los Alamitos (2002)CrossRefGoogle Scholar
  3. Albert, D., Hockemeyer, C., Conlan, O., Wade, V.: Reusing adaptive learning resources. In: Lee, C.-H., et al. (eds.) Proceedings of the International Conference on Computers in Education ICCE/SchoolNet 2001, vol. 1, pp. 205–210 (2001)Google Scholar
  4. Albert, D., Hockemeyer, C., Kickmeier-Rust, M.D., Peirce, N., Conlan, C.: Microadaptivity within complex learning situations – a personalized approach based on competence structures and problem spaces. In: Hirashima, T., Hoppe, H.U., Shwu-Ching Young, S. (eds.) Supporting Learning Flow through Integrative Technologies. Frontiers in Artificial Intelligence and Applications, vol. 162, IOS Press (2007) ISBN 978-1-58603-797-0; Albert, D., Lukas, J. (eds.): Knowledge Spaces: Theories, Empirical Research, Applications. Lawrence Erlbaum Associates, Mahwah (1999)Google Scholar
  5. Augustin, T., Hockemeyer, C., Kickmeier-Rust, M.D., Albert, D.: Individualized Skill Assessment in Digital Learning Games: Basic Definitionsand Mathematical Formalism. IEEE Transactions on Learning Technologies 4(2), 138–148 (2011)CrossRefGoogle Scholar
  6. Canfield, W.: ALEKS: A Web-based intelligent tutoring system. Mathematics and Computer Education 35, 152–158 (2001)Google Scholar
  7. Conlan, O., Hockemeyer, C., Wade, V., Albert, D.: Metadata driven approaches to facilitate adaptivity in personalized eLearning systems. The Journal of Information and Systems in Education 1, 38–44 (2002)Google Scholar
  8. Conlan, O., O’Keeffe, I., Hampson, C., Heller, J.: Using knowledge space theory to support learner modeling and personalization. In: Reeves, T., Yamashita, S. (eds.) Proceedings of World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education 2006, pp. 1912–1919. AACE, Chesapeake (2006)Google Scholar
  9. Doignon, J., Falmagne, J.: Spaces for the assessment of knowledge. International Journal of Man-Machine Studies 23, 175–196 (1985)zbMATHCrossRefGoogle Scholar
  10. Doignon, J., Falmagne, J.: Knowledge Spaces. Springer, Berlin (1999)zbMATHCrossRefGoogle Scholar
  11. Dowling, C.E., Hockemeyer, C.: Computing the intersection of knowledge spaces using only their basis. In: Dowling, C.E., Roberts, F.S., Theuns, P. (eds.) Recent Progress in Mathematical Psychology, pp. 133–141. Lawrence Erlbaum Associates Ltd., Mahwah (1998)Google Scholar
  12. Falmagne, J.-C., Doignon, J.-P.: Learning spaces. Interdisciplinary applied mathematics. Springer, Berlin (2011)zbMATHCrossRefGoogle Scholar
  13. Falmagne, J.-C., Doignon, J.-P., Cosyn, E., Thiery, N.: The assessment of knowledge in theory and practice (2004), (retrieved August 23, 2011)
  14. Fruhmann, K., Nussbaumer, A., Albert, D.: A Psycho-Pedagogical Framework for Self-Regulated Learning in a Responsive Open Learning Environment. In: Hambach, S., Martens, A., Tavangarian, D., Urban, B. (eds.) Proceedings of the International Conference eLearning Baltics Science (eLBa Science 2010). Fraunhofer (2010)Google Scholar
  15. Görgün, I., Türker, A., Ozan, Y., Heller, J.: Learner Modeling to Facilitate Personalized E-Learning Experience. In: Kinshuk, Sampson, D.G., Isaías, P.T. (eds.) Cognition and Exploratory Learning in Digital Age (CELDA 2005), pp. 231–237. IADIS (2005)Google Scholar
  16. Hardy, M.E.: Use and evaluation of the ALEKS interactive tutoring system. Journal of Computing Sciences in Colleges 19(4), 342–347 (2004)Google Scholar
  17. Held, T.: An integrated approach for constructing, coding, and structuring a body of word problems. In: Albert, D., Lukas, J. (eds.) Knowledge Spaces: Theories, Empirical Research, Applications, pp. 67–102. Lawrence Erlbaum Associates, Mahwah (1999)Google Scholar
  18. Heller, J., Steiner, C., Hockemeyer, C., Albert, D.: Competence-Based Knowledge Structures for Personalised Learning. International Journal on E-Learning 5(1), 75–88 (2006)Google Scholar
  19. Hockemeyer, C.: A Comparison of Non–Deterministic Procedures for the Adaptive Assessment of Knowledge. Psychologische Beiträge 44, 495–503 (2002)Google Scholar
  20. Hockemeyer, C.: Competence based adaptive e-learning in dynamic domains. In: Hesse, F.W., Tamura, Y. (eds.) The Joint Workshop of Cognition and Learning through Media-Communication for Advanced E-Learning (JWCL), pp. 79-82, Berlin (2003)Google Scholar
  21. Hockemeyer, C., Conlan, O., Wade, V., Albert, D.: Applying competence prerequisite structures for eLearning and skill management. Journal of Universal Computer Science 9, 1428–1436 (2003)Google Scholar
  22. Hockemeyer, C., Held, T., Albert, D.: RATH - a relational adaptive tutoring hypertext WWW–environment based on knowledge space theory. In: Alvegård, C. (ed.) CALISCE 1998: Proceedings of the Fourth International Conference on Computer Aided Learning in Science and Engineering, pp. 417–423. Chalmers University of Technology, Göteborg (1998)Google Scholar
  23. Kickmeier-Rust, M.D., Albert, D.: The ELEKTRA ontology model: A learner-centered approach to resource description. In: Leung, H., Li, F., Lau, R., Li, Q. (eds.) ICWL 2007. LNCS, vol. 4823, pp. 78–89. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. Kickmeier-Rust, M.D., Albert, D.: Micro adaptivity: Protecting immersion in didactically adaptive digital educational games. Journal of Computer Assisted Learning 26, 95–105 (2010)CrossRefGoogle Scholar
  25. Kickmeier-Rust, M.D., Hillemann, E., Albert, D.: Tracking the UFO’s Paths: Using Eye-Tracking for the Evaluation of Serious Games. In: Shumaker, R. (ed.) Virtual and Mixed Reality, Part I, HCII 2011. LNCS, vol. 6773, pp. 315–324. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  26. Kickmeier-Rust, M.D., Mattheiss, E., Steiner, C.M., Albert, D.: A Psycho-Pedagogical Framework for Multi-Adaptive Educational Games. International Journal of Game-Based Learning 1(1), 45–58 (2011)CrossRefGoogle Scholar
  27. Korossy, K.: Extending the theory of knowledge spaces: A competence-performance approach. Zeitschrift für Psychologie 205, 53–82 (1997)Google Scholar
  28. Korossy, K.: Modeling knowledge as competence and performance. In: Albert, D., Lukas, J. (eds.) Knowledge Spaces: Theories, Empirical Research, Applications, pp. 103–132. Lawrence Erlbaum Associates, Mahwah (1999)Google Scholar
  29. Pilato, G., Pirrone, R., Rizzo, R.: A KST-based system for student tutoring. Applied Artificial Intelligence 22, 283–308 (2008)CrossRefGoogle Scholar
  30. Steiner, C.M., Albert, D.: Personalising Learning through Prerequisite Structures Derived from Concept Maps. In: Leung, H., Li, F., Lau, R., Li, Q. (eds.) ICWL 2007. LNCS, vol. 4823, pp. 43–54. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  31. Steiner, C., Albert, D., Heller, J.: Concept Mapping as a Means to Build E-Learning. In: Buzzetto-More, N.A. (ed.) Advanced Principles of Effective e-Learning, pp. 59–111. Informing Science Press, Santa Rosa (2007)Google Scholar
  32. Steiner, C., Nussbaumer, A., Albert, D.: Supporting Self-Regulated Personalised Learning through Competence-Based Knowledge Space Theory. Policy Futures in Education 7(6), 645–661 (2009)CrossRefGoogle Scholar
  33. Zimmerman, B.J.: Becoming a Self-Regulated Learner: An Overview. Theory Into Practice 41(2), 64–70 (2002)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dietrich Albert
    • 1
    • 2
  • Cord Hockemeyer
    • 2
  • Michael D. Kickmeier-Rust
    • 1
  • Alexander Nussbaumer
    • 1
  • Christina M. Steiner
    • 1
  1. 1.Knowledge Management Institute, Cognitive Science SectionGraz University of TechnologyGrazAustria
  2. 2.Department of PsychologyUniversity of GrazGrazAustria

Personalised recommendations