Implementation of a Cue-Based Aggregation with a Swarm Robotic System

  • Farshad Arvin
  • Shyamala C. Doraisamy
  • Khairulmizam Samsudin
  • Faisul Arif Ahmad
  • Abdul Rahman Ramli
Part of the Communications in Computer and Information Science book series (CCIS, volume 295)

Abstract

This paper presents an aggregation behavior using a robot swarm. Swarm robotics takes inspiration from behaviors of social insects. BEECLUST is an aggregation control that is inspired from thermotactic behavior of young honeybees in producing clusters. In this study, aggregation method is implemented with a modification on original BEECLUST. Both aggregations are performed using real and simulated robots. We aim to demonstrate that, a simple change in control of individual robots results in significant changes in collective behavior of the swarm. In addition, the behavior of the swarm is modeled by a macroscopic modeling based on a probability control. The presented model in this study could depict the behavior of swarm throughout the performed scenarios with real and simulated robots.

Keywords

Swarm Robotics Aggregation Collective Behavior Modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Şahin, E., Winfield, A.: Special issue on swarm robotics. Swarm Intelligence 2, 69–72 (2008)CrossRefGoogle Scholar
  2. 2.
    Beni, G.: From Swarm Intelligence to Swarm Robotics. In: Şahin, E., Spears, W.M. (eds.) Swarm Robotics 2004. LNCS, vol. 3342, pp. 1–9. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Şahin, E.: Swarm Robotics: From Sources of Inspiration to Domains of Application. In: Şahin, E., Spears, W.M. (eds.) Swarm Robotics 2004. LNCS, vol. 3342, pp. 10–20. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Dorigo, M., Şahin, E.: Swarm robotics - special issue editorial. Autonomous Robots 17, 111–113 (2004)CrossRefGoogle Scholar
  5. 5.
    Turgut, A.E., Çelikkanat, H., Gökçe, F., Şahin, E.: Self-organized flocking in mobile robot swarms. Swarm Intelligence 2, 97–120 (2008)CrossRefGoogle Scholar
  6. 6.
    Melhuish, C., Sendova-Franks, A., Scholes, S., Horsfield, I., Welsby, F.: Ant-inspired sorting by robots: the importance of initial clustering. Journal of the Royal Society Interface 3, 235–242 (2006)CrossRefGoogle Scholar
  7. 7.
    Soysal, O., Şahin, E.: A Macroscopic Model for Self-organized Aggregation in Swarm Robotic Systems. In: Şahin, E., Spears, W.M., Winfield, A.F.T. (eds.) Swarm Robotics Ws. LNCS, vol. 4433, pp. 27–42. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Kernbach, S., Thenius, R., Kernbach, O., Schmickl, T.: Re-embodiment of Honeybee Aggregation Behavior in an Artificial Micro-Robotic System. Adaptive Behavior 17, 237–259 (2009)CrossRefGoogle Scholar
  9. 9.
    Soysal, O., Şahin, E.: Probabilistic aggregation strategies in swarm robotic systems. In: Proc. of the IEEE Swarm Intelligence Symposium, pp. 325–332 (2005)Google Scholar
  10. 10.
    Schmickl, T., Thenius, R., Moeslinger, C., Radspieler, G., Kernbach, S., Szymanski, M., Crailsheim, K.: Get in touch: cooperative decision making based on robot-to-robot collisions. Autonomous Agents and Multi-Agent Systems 18, 133–155 (2009)CrossRefGoogle Scholar
  11. 11.
    Garnier, S., Jost, C., Gautrais, J., Asadpour, M., Caprari, G., Jeanson, R., Grimal, A., Theraulaz, G.: The embodiment of cockroach aggregation behavior in a group of micro-robots. Artificial Life 14, 387–408 (2008)CrossRefGoogle Scholar
  12. 12.
    Melhuish, C., Holland, O., Hoddell, S.: Convoying: using chorusing to form travelling groups of minimal agents. Robotics and Autonomous Systems 28, 207–216 (1999)CrossRefGoogle Scholar
  13. 13.
    Arvin, F., Samsudin, K., Ramli, A., Bekravi, M.: Imitation of Honeybee Aggregation with Collective Behavior of Swarm Robots. International Journal of Computational Intelligence Systems 4, 739–748 (2011)CrossRefGoogle Scholar
  14. 14.
    Martinoli, A., Ijspeert, A.J., Mondada, F.: Understanding collective aggregation mechanisms: From probabilistic modelling to experiments with real robots. Robotics and Autonomous Systems 29, 51–63 (1999)CrossRefGoogle Scholar
  15. 15.
    Schmickl, T., Hamann, H., Wörnb, H., Crailsheim, K.: Two different approaches to a macroscopic model of a bio-inspired robotic swarm. Robotics and Autonomous Systems 57, 913–921 (2009)CrossRefGoogle Scholar
  16. 16.
    Gutiérrez, Á., Campo, A., Dorigo, M., Amor, D., Magdalena, L., Monasterio-Huelin, F.: An Open Localisation and Local Communication Embodied Sensor. Sensors 8, 7545–7563 (2008)CrossRefGoogle Scholar
  17. 17.
    Arvin, F., Samsudin, K., Ramli, A.: Development of a Miniature Robot for Swarm Robotic Application. International Journal of Computer and Electrical Engineering 1, 436–442 (2009)Google Scholar
  18. 18.
    Arvin, F., Samsudin, K., Ramli, A.R.: Development of IR-Based Short-Range Communication Techniques for Swarm Robot Applications. Advances in Electrical and Computer Engineering 10, 61–68 (2010)CrossRefGoogle Scholar
  19. 19.
    Arvin, F., Samsudin, K., Nasseri, M.A.: Design of a differential-drive wheeled robot controller with pulse-width modulation. In: Innovative Technologies in Intelligent Systems and Industrial Applications, pp. 143–147 (2009)Google Scholar
  20. 20.
    VensimTM, Ventana Systems, http://www.vensim.com/

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Farshad Arvin
    • 1
  • Shyamala C. Doraisamy
    • 2
  • Khairulmizam Samsudin
    • 1
  • Faisul Arif Ahmad
    • 1
  • Abdul Rahman Ramli
    • 3
  1. 1.Computer Systems Research Group, Faculty of EngineeringUniversity Putra Malaysia, UPMSerdangMalaysia
  2. 2.Department of Multimedia, Faculty of Computer Science & Information TechnologyUniversity Putra Malaysia, UPMSerdangMalaysia
  3. 3.Intelligent Systems & Robotic Lab., Institute of Advanced TechnologyUniversity Putra Malaysia, UPMSerdangMalaysia

Personalised recommendations