Advertisement

Optimized Hybrid Parallel Lattice Boltzmann Fluid Flow Simulations on Complex Geometries

  • Jonas Fietz
  • Mathias J. Krause
  • Christian Schulz
  • Peter Sanders
  • Vincent Heuveline
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7484)

Abstract

Computational fluid dynamics (CFD) have become more and more important in the last decades, accelerating research in many different areas for a variety of applications. In this paper, we present an optimized hybrid parallelization strategy capable of solving large-scale fluid flow problems on complex computational domains. The approach relies on the combination of lattice Boltzmann methods (LBM) for the fluid flow simulation, octree data structures for a sparse block-wise representation and decomposition of the geometry as well as graph partitioning methods optimizing load balance and communication costs. The approach is realized in the framework of the open source library OpenLB and evaluated for the simulation of respiration in a subpart of a human lung. The efficiency gains are discussed by comparing the results of the full optimized approach with those of more simpler ones realized prior.

Keywords

Computational Fluid Dynamics Numerical Simulation Lattice Boltzmann Method Parallelization Graph Partitioning High Performance Computing Human Lungs Domain Decomposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bisson, M., Bernaschi, M., Melchionna, S., Succi, S., Kaxiras, E.: Multiscale hemodynamics using GPU clusters. Communications in Computational Physics (2011)Google Scholar
  2. 2.
    Fietz, J.: Performance Optimization of Parallel Lattice Boltzmann Fluid Flow Simulations on Complex Geometries. Diplomarbeit, Karlsruhe Institute of Technology (KIT), Department of Mathematics (December 2011)Google Scholar
  3. 3.
    Heuveline, V., Krause, M.J., Latt, J.: Towards a Hybrid Parallelization of Lattice Boltzmann Methods. Computers & Mathematics with Applications 58, 1071–1080 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Junk, M., Klar, A.: Discretizations for the Incompressible Navier-Stokes Equations Based on the Lattice Boltzmann Method. SIAM J. Sci. Comput. 22(1), 1–19 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Krause, M.J., Gengenbach, T., Heuveline, V.: Hybrid Parallel Simulations of Fluid Flows in Complex Geometries: Application to the Human Lungs. In: Guarracino, M.R., Vivien, F., Träff, J.L., Cannatoro, M., Danelutto, M., Hast, A., Perla, F., Knüpfer, A., Di Martino, B., Alexander, M. (eds.) Euro-Par-Workshop 2010. LNCS, vol. 6586, pp. 209–216. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Krause, M.J.: Fluid Flow Simulation and Optimisation with Lattice Boltzmann Methods on High Performance Computers: Application to the Human Respiratory System. Karlsruhe Institute of Technology, KIT (2010)Google Scholar
  7. 7.
    Massaioli, F., Amati, G.: Achieving high performance in a LBM code using OpenMP. UnknownGoogle Scholar
  8. 8.
    Pohl, T., Deserno, F., Thurey, N., Rude, U., Lammers, P., Wellein, G., Zeiser, T.: Performance Evaluation of Parallel Large-Scale Lattice Boltzmann Applications on Three Supercomputing Architectures. In: Proceedings of the ACM/IEEE SC 2004 Conference Supercomputing 2004, p. 21 (2004)Google Scholar
  9. 9.
    Sanders, P., Schulz, C.: Engineering Multilevel Graph Partitioning Algorithms. In: 19th European Symposium on Algorithms (2011)Google Scholar
  10. 10.
    Skordos, P.: Initial and boundary conditions for the Lattice Boltzmann Method. Phys. Rev. E 48(6), 4823–4842 (1993)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Sukop, M.C., Thorne, D.T.: Lattice Boltzmann modeling. Springer (2006)Google Scholar
  12. 12.
    Wellein, G., Zeiser, T., Hager, G., Donath, S.: On the single processor performance of simple lattice Boltzmann kernels. Comput. Fluids 35(8-9), 910–919 (2006)zbMATHCrossRefGoogle Scholar
  13. 13.
    Zeiser, T., Götz, J., Stürmer, M.: On performance and accuracy of lattice Boltzmann approaches for single phase flow in porous media: A toy became an accepted tool - how to maintain its features despite more and mor complex (physical) models and changing trends in high performance computing!?. In: Shokina, N., Resch, M., Shokin, Y. (eds.) Proceedings of 3rd Russian-German Workshop on High Performance Computing, Novosibirsk. Springer (July 2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jonas Fietz
    • 2
  • Mathias J. Krause
    • 2
  • Christian Schulz
    • 1
  • Peter Sanders
    • 1
  • Vincent Heuveline
    • 2
  1. 1.Institute for Theoretical Informatics, Algorithmics IIKarlsruhe Institute of Technology (KIT)Germany
  2. 2.Engineering Mathematics and Computing Lab (EMCL)Karlsruhe Institute of Technology (KIT)Germany

Personalised recommendations