Advertisement

Enabling Cloud Interoperability with COMPSs

  • Fabrizio Marozzo
  • Francesc Lordan
  • Roger Rafanell
  • Daniele Lezzi
  • Domenico Talia
  • Rosa M. Badia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7484)

Abstract

The advent of Cloud computing has given to researchers the ability to access resources that satisfy their growing needs, which could not be satisfied by traditional computing resources such as PCs and locally managed clusters. On the other side, such ability, has opened new challenges for the execution of their computational work and the managing of massive amounts of data into resources provided by different private and public infrastructures.

COMP Superscalar (COMPSs) is a programming framework that provides a programming model and a runtime that ease the development of applications for distributed environments and their execution on a wide range of computational infrastructures. COMPSs has been recently extended in order to be interoperable with several cloud technologies like Amazon, OpenNebula, Emotive and other OCCI compliant offerings.

This paper presents the extensions of this interoperability layer to support the execution of COMPSs applications into the Windows Azure Platform. The framework has been evaluated through the porting of a data mining workflow to COMPSs and the execution on an hybrid testbed.

Keywords

Parallel programming models Cloud computing Data mining PaaS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    European Grid Infrastructure, http://www.egi.eu
  2. 2.
  3. 3.
    European Middleware Initiative, http://www.eu-emi.eu
  4. 4.
  5. 5.
    Amazon Elastic Compute Cloud, http://aws.amazon.com/es/ec2
  6. 6.
    Virtual multidisciplinary ENvironments USing Cloud infrastructures, http://www.venus-c.eu
  7. 7.
    Tejedor, E., Badia, R.M.: COMP Superscalar: Bringing GRID superscalar and GCM Together. In: IEEE Int. Symposium on Cluster Computing and the Grid, Lyon, France (2008)Google Scholar
  8. 8.
    Lezzi, D., Rafanell, R., Carrion, A., Blanquer, I., Badia, R.M., Hernandez, V.: Enabling e-Science applications on the Cloud with COMPSs. Cloud Computing: Project and Initiatives (2011)Google Scholar
  9. 9.
    Open Cloud Computing Interface Working Group, http://www.occi-wg.org
  10. 10.
    Distributed Management Task Force Inc., Open Virtualization Format Specification v1.1. DMT Standar DSP0243 (2010)Google Scholar
  11. 11.
    Allen, G., Davis, K., Goodale, T., Hutanu, A., Kaiser, H., Kielmann, T., Merzky, A., van Nieuwpoort, R., Reinefeld, A., Schintke, F., Schütt, T.T., Seidel, E., Ullmer, B.: The Grid Application Toolkit: Towards Generic and Easy Application Programming Interfaces for the Grid. Proceedings of the IEEE 93(3) (March 2005)Google Scholar
  12. 12.
    Marozzo, F., Talia, D., Trunfio, P.: A Cloud Framework for Parameter Sweeping Data Mining Applications. In: 3rd IEEE Int. Conference on Cloud Computing Technology and Science (CloudCom 2011), Athens, Greece (2011)Google Scholar
  13. 13.
    Witten, H., Frank, E.: Data Mining: Practical machine learning tools with Java implementations. Morgan Kaufmann Publishers (2000)Google Scholar
  14. 14.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers (1993)Google Scholar
  15. 15.
    Goiri, I., Guitart, J., Torres, J.: Elastic Management of Tasks in Virtualized Environments. In: XX Jornadas de Paralelismo (JP 2009), Coruña, Spain (2009)Google Scholar
  16. 16.
    GlusterFS Distributed Network File System, http://www.gluster.org
  17. 17.
    Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51, 107–113 (2008)CrossRefGoogle Scholar
  18. 18.
    Apache Hadoop, http://hadoop.apache.org
  19. 19.
  20. 20.
  21. 21.
  22. 22.
    Ekanayake, J., Li, H., Zhang, B., Gunarathne, T., Bae, S., Qiu, J., Fox, G.: Twister: A Runtime for Iterative MapReduce. In: 1st Int. Workshop on MapReduce and its Applications (MAPREDUCE 2010), Chicago, USA (2010)Google Scholar
  23. 23.
    Wei, Y., Sukumar, K., Vecchiola, C., Karunamoorthy, D., Buyya, R.: Aneka Cloud Application Platform and Its Integration with Windows Azure. CoRR, abs/1103.2590 (2011)Google Scholar
  24. 24.
    Simmhan, Y., Ingen, C., Subramanian, G., Li, J.: Bridging the Gap between Desktop and the Cloud for eScience Applications. In: 3rd IEEE Int. Conference on Cloud Computing (CLOUD 2010), Washington, USA (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Fabrizio Marozzo
    • 3
  • Francesc Lordan
    • 1
  • Roger Rafanell
    • 1
  • Daniele Lezzi
    • 1
  • Domenico Talia
    • 3
    • 4
  • Rosa M. Badia
    • 1
    • 2
  1. 1.Barcelona Supercomputing Center - Centro Nacional de Supercomputación (BSC-CNS)Spain
  2. 2.Artificial Intelligence Research Institute (IIIA)Spanish Council for Scientific Research (CSIC)Spain
  3. 3.DEISUniversity of CalabriaRendeItaly
  4. 4.ICAR-CNRRendeItaly

Personalised recommendations