Impact of Variable Priced Cloud Resources on Scientific Workflow Scheduling

  • Simon Ostermann
  • Radu Prodan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7484)

Abstract

We analyze the problem of provisioning Cloud instances to large scientific workflows that do not benefit from sufficient Grid resources as required by their computational requirements. We propose an extension to the dynamic critical path scheduling algorithm to deal with the general resource leasing model encountered in today’s commercial Clouds. We analyze the availability of the cheaper and unreliable Spot instances and study their potential to complement the unavailability of Grid resources for large workflow executions. Experimental results demonstrate that Spot instances represent a 60% cheaper but equally reliable alternative to Standard instances provided that a correct user bet is made.

Keywords

Cloud computing Grid computing Spot instances Scheduling Scientific workflows Performance Cost 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rahma, M., Venugopal, S., Buyya, R.: A Dynamic Critical Path Algorithm for scheduling Scientific Workflow Applications on Global Grids. In: eScience, pp. 35–42. IEEE Computer Society (2007)Google Scholar
  2. 2.
    Nadeem, F., Yousaf, M., Prodan, R., Fahringer, T.: Soft benchmarks-based application performance prediction using a minimum training set. In: e-Science. IEEE Computer Society Press (2006)Google Scholar
  3. 3.
    Iosup, A., Ostermann, S., Yigitbasi, N., Prodan, R., Fahringer, T., Epema, D.: Performance Analysis of Cloud Computing Services for Many-Tasks Scientific Computing. IEEE TPDS 22(6), 931–945 (2011)Google Scholar
  4. 4.
    Kwok, Y.-K., Ahmad, I.: Dynamic Critical-Path Scheduling: An effective Technique for allocating Task Graphs to Multiprocessors. IEEE TPDS 7(5), 506–521 (1996)Google Scholar
  5. 5.
    Keahey, K., Freeman, T., Lauret, J., Olson, D.: Virtual Workspaces for Scientific Applications. In: Scientific Discovery through Advanced Computing, Boston (June 2007)Google Scholar
  6. 6.
    Apache, Apache Hadoop Project develops open-source Software for Reliable, Scalable, Distributed Computing (May 2010), http://hadoop.apache.org/
  7. 7.
    Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L., Zagorodnov, D.: Eucalyptus: A Technical Report on an Elastic Utility Computing Architecture Linking Your Programs to Useful Systems. UCSB Computer Science. Tech. Rep. 2008-10 (2008)Google Scholar
  8. 8.
    Sangho, Y., Kondo, D., Andrzejak, A.: Reducing Costs of Spot Instances via Checkpointing in the Amazon Elastic Compute Cloud. In: CLOUD, pp. 236–243. IEEE (2010)Google Scholar
  9. 9.
    Assuncao, A.C.M., Buyya, R.: Evaluating the Cost-Benefit of using Cloud Computing to Extend the Capacity of Clusters. In: HPCC. ACM (2009)Google Scholar
  10. 10.
    Dörnemann, T., Juhnke, E., Freisleben, B.: On-demand Resource Provisioning for BPEL Workflows using Amazon’s Elastic Compute Cloud. In: CCGrid, pp. 140–147. IEEE Computer Society (2009)Google Scholar
  11. 11.
    Ramakrishnan, L., Koelbel, C., Kee, Y.-S., Wolski, R., Nurmi, D., Gannon, D., Obertelli, G., YarKhan, A., Mandal, A., Huang, T.M., Thyagaraja, K., Zagorodnov, D.: Vgrads: enabling e-Science Workflows on Grids and Clouds with Fault Tolerance. In: SC. ACM (2009)Google Scholar
  12. 12.
    Marshall, P., Keahey, K., Freeman, T.: Elastic Site: Using Clouds to Elastically Extend Site Resources. In: CCGrid, pp. 43–52. IEEE (2010)Google Scholar
  13. 13.
    Blanco, C.V., Huedo, E., Montero, R.S., Llorente, I.M.: Dynamic Provision of Computing Resources from Grid Infrastructures and Cloud Providers. In: GPC Workshops, pp. 113–120. IEEE Computer Society (2009)Google Scholar
  14. 14.
    Fahringer, T., Prodan, R., Duan, R., Nerieri, F., Podlipnig, S., Qin, J., Siddiqui, M., Truong, H.L., Villazón, A., Wieczorek, M.: ASKALON: A Grid application development and computing environment. In: GRID, pp. 122–131. IEEE (2005)Google Scholar
  15. 15.
    Ostermann, S., Plankensteiner, K., Prodan, R.: Using a New Event-based Simulation Framework for Investigating Different Resource Provisioning Methods in Clouds. Scientific Programming Journal 19(2-3), 161–178 (2011)Google Scholar
  16. 16.
    Cullmann, J., Mishra, V., Peters, R.: Flow analysis with WaSiM-ETH - model parameter sensitivity at different scales. Advances in Geosciences 9, 73–77 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Simon Ostermann
    • 1
  • Radu Prodan
    • 1
  1. 1.Institute of Computer ScienceUniversity of InnsbruckInnsbruckAustria

Personalised recommendations