Lax Extensions of Coalgebra Functors

  • Johannes Marti
  • Yde Venema
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7399)

Abstract

We discuss the use of relation lifting in the theory of set-based coalgebra. On the one hand we prove that the neighborhood functor does not extend to a relation lifting of which the associated notion of bisimilarity coincides with behavorial equivalence.

On the other hand we argue that relation liftings may be of use for many other functors that do not preserve weak pullbacks, such as the monotone neighborhood functor. We prove that for any relation lifting L that is a lax extension extending the coalgebra functor T and preserving diagonal relations, L-bisimilarity captures behavioral equivalence. We also show that if T is finitary, it admits such an extension iff there is a separating set of finitary monotone predicate liftings for T.

Keywords

coalgebra relation lifting predicate lifting bisimilarity 

References

  1. 1.
    Adámek, J., Trnková, V.: Automata and Algebras in Categories. Kluwer Academic Publishers, Norwell (1990)MATHGoogle Scholar
  2. 2.
    Baltag, A.: A logic for coalgebraic simulation. Electronic Notes in Theoretical Computer Science 33, 42–60 (2000)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Peter Gumm, H., Schröder, T.: Types and coalgebraic structure. Algebra Universalis 53, 229–252 (2005)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Hansen, H.H., Kupke, C.: A coalgebraic perspective on monotone modal logic. Electronic Notes in Theoretical Computer Science 106, 121–143 (2004)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Hansen, H.H., Kupke, C., Pacuit, E.: Bisimulation for Neighbourhood Structures. In: Mossakowski, T., Montanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS, vol. 4624, pp. 279–293. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Hansen, H.H., Kupke, C., Pacuit, E.: Neighbourhood structures: Bisimilarity and basic model theory. Logical Methods in Computer Science 5(2) (2009)Google Scholar
  7. 7.
    Hughes, J., Jacobs, B.: Simulations in coalgebra. In: Theor. Comp. Sci. Elsevier (2003)Google Scholar
  8. 8.
    Kelly, G.M.: Basic concepts of enriched category theory (2005)Google Scholar
  9. 9.
    Kupke, C., Kurz, A., de Venema, Y.: Completeness for the coalgebraic cover modality (accepted for publication)Google Scholar
  10. 10.
    Kurz, A., Leal, R.A.: Equational coalgebraic logic. Electronic Notes in Theoretical Computer Science, 333–356 (2009)Google Scholar
  11. 11.
    Levy, P.B.: Similarity Quotients as Final Coalgebras. In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 27–41. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Marti, J.: Relation liftings in coalgebraic modal logic. Master’s thesis, ILLC, University of Amsterdam (2011)Google Scholar
  13. 13.
    Pattinson, D.: Coalgebraic modal logic: Soundness, completeness and decidability of local consequence. Theoretical Computer Science 309(1–3), 177–193 (2003)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Rutten, J.: Universal coalgebra: a theory of systems. Theoretical Computer Science 249(1), 3–80 (2000)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Santocanale, L., de Venema, Y.: Uniform interpolation for monotone modal logic. In: Beklemishev, L., Goranko, V., Shehtman, V. (eds.) Advances in Modal Logic, vol. 8, pp. 350–370. College Publications (2010)Google Scholar
  16. 16.
    Schröder, L.: Expressivity of coalgebraic modal logic: The limits and beyond. Theoretical Computer Science 390(2-3), 230–247 (2008); Foundations of Software Science and Computational StructuresMathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Schubert, C., Seal, G.J.: Extensions in the theory of lax algebras. Theories and Applications of Categories 21(7), 118–151 (2008)MathSciNetMATHGoogle Scholar
  18. 18.
    Thijs, A.: Simulation and Fixpoint Semantics. PhD thesis, University of Groningen (1996)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Johannes Marti
    • 1
  • Yde Venema
    • 1
  1. 1.ILLCUniversity of AmsterdamThe Netherlands

Personalised recommendations