Advertisement

Automata Learning through Counterexample Guided Abstraction Refinement

  • Fides Aarts
  • Faranak Heidarian
  • Harco Kuppens
  • Petur Olsen
  • Frits Vaandrager
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7436)

Abstract

Abstraction is the key when learning behavioral models of realistic systems. Hence, in most practical applications where automata learning is used to construct models of software components, researchers manually define abstractions which, depending on the history, map a large set of concrete events to a small set of abstract events that can be handled by automata learning tools. In this article, we show how such abstractions can be constructed fully automatically for a restricted class of extended finite state machines in which one can test for equality of data parameters, but no operations on data are allowed. Our approach uses counterexample-guided abstraction refinement: whenever the current abstraction is too coarse and induces nondeterministic behavior, the abstraction is refined automatically. Using Tomte, a prototype tool implementing our algorithm, we have succeeded to learn – fully automatically – models of several realistic software components, including the biometric passport and the SIP protocol.

Keywords

Session Initiation Protocol Input Symbol Automaton Learn Output Symbol Equivalence Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aarts, F., Jonsson, B., Uijen, J.: Generating Models of Infinite-State Communication Protocols Using Regular Inference with Abstraction. In: Petrenko, A., Simão, A., Maldonado, J.C. (eds.) ICTSS 2010. LNCS, vol. 6435, pp. 188–204. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Aarts, F., Schmaltz, J., Vaandrager, F.W.: Inference and Abstraction of the Biometric Passport. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6415, pp. 673–686. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Berg, T., Grinchtein, O., Jonsson, B., Leucker, M., Raffelt, H., Steffen, B.: On the Correspondence Between Conformance Testing and Regular Inference. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 175–189. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Cassel, S., Howar, F., Jonsson, B., Merten, M., Steffen, B.: A Succinct Canonical Register Automaton Model. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 366–380. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Cho, C.Y., Babic, D., Shin, E.C.R., Song, D.: Inference and analysis of formal models of botnet command and control protocols. In: Conference on Computer and Communications Security, pp. 426–439. ACM (2010)Google Scholar
  7. 7.
    Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Comparetti, P.M., Wondracek, G., Krügel, C., Kirda, E.: Prospex: Protocol specification extraction. In: IEEE Symposium on Security and Privacy, pp. 110–125. IEEE CS (2009)Google Scholar
  9. 9.
    Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S., Xiao, C.: The Daikon system for dynamic detection of likely invariants. SCP 69(1-3), 35–45 (2007)MathSciNetzbMATHGoogle Scholar
  10. 10.
    de la Higuera, C.: Grammatical Inference: Learning Automata and Grammars. Cambridge University Press (April 2010)Google Scholar
  11. 11.
    Howar, F., Steffen, B., Merten, M.: From ZULU to RERS. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6415, pp. 687–704. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Howar, F., Steffen, B., Merten, M.: Automata learning with automated alphabet abstraction refinement. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 263–277. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Hungar, H., Niese, O., Steffen, B.: Domain-Specific Optimization in Automata Learning. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 315–327. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Ip, C.N., Dill, D.L.: Better verification through symmetry. FMSD 9(1/2), 41–75 (1996)Google Scholar
  15. 15.
    Leucker, M.: Learning Meets Verification. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2006. LNCS, vol. 4709, pp. 127–151. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Loiseaux, C., Graf, S., Sifakis, J., Boujjani, A., Bensalem, S.: Property preserving abstractions for the verification of concurrent systems. FMSD 6(1), 11–44 (1995)zbMATHGoogle Scholar
  17. 17.
    Merten, M., Steffen, B., Howar, F., Margaria, T.: Next Generation LearnLib. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 220–223. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Niese, O.: An Integrated Approach to Testing Complex Systems. PhD thesis, University of Dortmund (2003)Google Scholar
  19. 19.
    Raffelt, H., Steffen, B., Berg, T.: Learnlib: a library for automata learning and experimentation. In: FMICS 2005, pp. 62–71. ACM Press, New York (2005)Google Scholar
  20. 20.
    Raffelt, H., Steffen, B., Berg, T., Margaria, T.: Learnlib: a framework for extrapolating behavioral models. STTT 11(5), 393–407 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Fides Aarts
    • 1
  • Faranak Heidarian
    • 1
  • Harco Kuppens
    • 1
  • Petur Olsen
    • 2
  • Frits Vaandrager
    • 1
  1. 1.Institute for Computing and Information SciencesRadboud University NijmegenNijmegenThe Netherlands
  2. 2.Department of Computer ScienceAalborg UniversityAalborgDenmark

Personalised recommendations