Satellite Rendezvous and Conjunction Avoidance: Case Studies in Verification of Nonlinear Hybrid Systems

  • Taylor T. Johnson
  • Jeremy Green
  • Sayan Mitra
  • Rachel Dudley
  • Richard Scott Erwin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7436)


Satellite systems are beginning to incorporate complex autonomous operations, which calls for rigorous reliability assurances. Human operators usually plan satellite maneuvers in detail, but autonomous operation will require software to make decisions using noisy sensor data and problem solutions with numerical inaccuracies. For such systems, formal verification guarantees are particularly attractive. This paper presents automatic verification techniques for providing assurances in satellite maneuvers. The specific reliability criteria studied are rendezvous and conjunction avoidance for two satellites performing orbital transfers. Three factors pose challenges for verifying satellite systems: (a) incommensurate orbits, (b) uncertainty of orbital parameters after thrusting, and (c) nonlinear dynamics. Three abstractions are proposed for contending with these challenges: (a) quotienting of the state-space based on periodicity of the orbital dynamics, (b) aggregation of similar transfer orbits, and (c) overapproximation of nonlinear dynamics using hybridization. The method’s feasibility is established via experiments with a prototype tool that computes the abstractions and uses existing hybrid systems model checkers.


Angular Position Hybrid Automaton Passive Satellite Transfer Orbit Active Satellite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allgeier, S.E., Fitz-Coy, N.G., Erwin, R.S., Lovell, T.A.: Metrics for mission planning of formation flight. In: Proc. AAS/AIAA Astrodynamics Specialist Conference, Girdwood, AK (July 2011)Google Scholar
  2. 2.
    Althoff, M., Stursberg, O., Buss, M.: Reachability analysis of nonlinear systems with uncertain parameters using conservative linearization. In: 47th IEEE Conference on Decision and Control (CDC), pp. 4042–4048 (December 2008)Google Scholar
  3. 3.
    Althoff, M., Le Guernic, C., Krogh, B.H.: Reachable set computation for uncertain time-varying linear systems. In: Hybrid Systems: Computation and Control (HSCC), pp. 93–102. ACM, New York (2011)Google Scholar
  4. 4.
    Althoff, M., Rajhans, A., Krogh, B., Yaldiz, S., Li, X., Pileggi, L.: Formal verification of phase-locked loops using reachability analysis and continuization. In: IEEE/ACM International Conference on Computer-Aided Design, ICCAD (2011)Google Scholar
  5. 5.
    Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theoretical Computer Science 138(1), 3–34 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Asarin, E., Dang, T., Girard, A.: Hybridization methods for the analysis of nonlinear systems. Acta Informatica 43, 451–476 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Bate, R.R., Mueller, D.D., White, J.E.: Fundamentals of Astrodynamics. Dover (1971)Google Scholar
  8. 8.
    Battin, R.H.: An introduction to the mathematics and methods of astrodynamics. AIAA education series. American Institute of Aeronautics and Astronautics (1999)Google Scholar
  9. 9.
    Bosse, A.B., Barnds, W.J., Brown, M.A., Creamer, N.G., Feerst, A., Henshaw, C.G., Hope, A.S., Kelm, B.E., Klein, P.A., Pipitone, F., Plourde, B.E., Whalen, B.P.: Sumo: Spacecraft for the Universal Modification of Orbits. In: Proc. of SPIE, vol. 5419, pp. 36–46 (2004)Google Scholar
  10. 10.
    Dang, T., Maler, O., Testylier, R.: Accurate hybridization of nonlinear systems. In: Hybrid Systems: Computation and Control (HSCC), pp. 11–20. ACM, New York (2010)Google Scholar
  11. 11.
    Flieller, D., Riedinger, P., Louis, J.P.: Computation and stability of limit cycles in hybrid systems. Nonlinear Analysis: Theory, Methods, & Applications 64(2), 352–367 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Frehse, G.: PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R., Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable Verification of Hybrid Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Gurfil, P., Kholshevnikov, K.V.: Manifolds and metrics in the relative spacecraft motion problem. Journal of Guidance Control and Dynamics 29(4), 1004–1010 (2006)CrossRefGoogle Scholar
  15. 15.
    Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: Hytech: a model checker for hybrid systems. Journal on Software Tools for Technology Transfer 1, 110–122 (1997)zbMATHCrossRefGoogle Scholar
  16. 16.
    Kaynar, D.K., Lynch, N., Segala, R., Vaandrager, F.: The Theory of Timed I/O Automata. Synthesis Lectures in Computer Science. Morgan & Claypool (2006)Google Scholar
  17. 17.
    Kurzhanskiy, A.A., Varaiya, P.: Ellipsoidal toolbox. In: 45th IEEE Conference on Decision and Control (CDC), pp. 1498–1503 (December 2006)Google Scholar
  18. 18.
    Lynch, N., Segala, R., Vaandrager, F.: Hybrid i/o automata. Inf. Comput. 185(1), 105–157 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Masur, H., Tabachnikov, S.: Rational billiards and flat structures. In: Hasselblatt, B., Katok, A. (eds.) Handbook of Dynamical Systems, Handbook of Dynamical Systems, vol. 1 Part A, ch. 13, pp. 1015–1089. Elsevier Science (2002)Google Scholar
  20. 20.
    Ocampo, C.: Finite burn maneuver modeling for a generalized spacecraft trajectory design and optimization system. Annals of the New York Academy of Sciences 1017(1), 210–233 (2004)CrossRefGoogle Scholar
  21. 21.
    Römgens, B.A., Mooij, E., Naeije, M.C.: Verified interval orbit propagation in satellite collision avoidance. In: Proc. AIAA Guidance, Navigation, and Control, Portland, OR (2011)Google Scholar
  22. 22.
    Vallado, D.A., McClain, W.D.: Fundamentals of astrodynamics and applications. Space technology library. Microcosm Press (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Taylor T. Johnson
    • 1
  • Jeremy Green
    • 1
  • Sayan Mitra
    • 1
  • Rachel Dudley
    • 2
  • Richard Scott Erwin
    • 3
  1. 1.University of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Iowa State UniversityAmesUSA
  3. 3.Air Force Research LaboratoryAlbuquerqueUSA

Personalised recommendations