Optimizing the Resource Allocation for Approximate Query Processing

  • Anna Yarygina
  • Boris Novikov
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 186)


Query optimization techniques are a proven tool essential for high performance of the database management systems. However, in a context of data spaces or new querying paradigms, such as similarity based search, exact query evaluation is neither computationally feasible nor meaningful and approximate query evaluation is the only reasonable option. In this paper a problem of resource allocation for approximate evaluation of complex queries is considered and an approximate algorithm for an optimal resource allocation is presented, providing the best feasible quality of the output result subject to a limited total cost of a query.


Resource Allocation Quality Function Query Evaluation Execution Plan Optimal Resource Allocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Babcock, B., Chaudhuri, S., Das, G.: Dynamic sample selection for approximate query processing. In: Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data, SIGMOD 2003, pp. 539–550. ACM, New York (2003), doi: CrossRefGoogle Scholar
  2. 2.
    Chaudhuri, S., Das, G., Narasayya, V.: Optimized stratified sampling for approximate query processing. ACM Trans. Database Syst. 32 (2007), doi:
  3. 3.
    Dell’Aquila, C., Di Tria, F., Lefons, E., Tangorra, F.: Accuracy estimation in approximate query processing. In: Proceedings of the 14th WSEAS International Conference on Computers: Part of the 14th WSEAS CSCC Multiconference, ICCOMP 2010, vol. II, pp. 452–458. World Scientific and Engineering Academy and Society (WSEAS), Stevens Point (2010), Google Scholar
  4. 4.
    Epimakhov, I., Hameurlain, A., Dillon, T., Morvan, F.: Resource Scheduling Methods for Query Optimization in Data Grid Systems. In: Eder, J., Bielikova, M., Tjoa, A.M. (eds.) ADBIS 2011. LNCS, vol. 6909, pp. 185–199. Springer, Heidelberg (2011), CrossRefGoogle Scholar
  5. 5.
    Hu, Y., Sundara, S., Srinivasan, J.: Supporting time-constrained sql queries in oracle. In: Proceedings of the 33rd International Conference on Very large Data Bases, VLDB 2007, pp. 1207–1218. VLDB Endowment (2007),
  6. 6.
    Jermaine, C., Arumugam, S., Pol, A., Dobra, A.: Scalable approximate query processing with the dbo engine. ACM Trans. Database Syst. 33, 23:1–23:54 (2008), doi: Google Scholar
  7. 7.
    Jiang, Q.: A framework for supporting quality of service requirements in a data stream management system. Ph.D. thesis, Arlington, TX, USA (2005) AAI3181900Google Scholar
  8. 8.
    Kossmann, D.: The state of the art in distributed query processing. ACM Comput. Surv. 32(4), 422–469 (2000), doi: CrossRefGoogle Scholar
  9. 9.
    Kossmann, D., Stocker, K.: Iterative dynamic programming: a new class of query optimization algorithms. ACM Trans. Database Syst. 25(1), 43–82 (2000), doi: CrossRefGoogle Scholar
  10. 10.
    Madnick, S.E., Wang, R.Y., Lee, Y.W., Zhu, H.: Overview and framework for data and information quality research. J. Data and Information Quality 1(1), 2:1–2:22 (2009), doi: Google Scholar
  11. 11.
    Pentaris, F., Ioannidis, Y.: Query optimization in distributed networks of autonomous database systems. ACM Trans. Database Syst. 31(2), 537–583 (2006), doi: CrossRefGoogle Scholar
  12. 12.
    Scarcello, F., Greco, G., Leone, N.: Weighted hypertree decompositions and optimal query plans. J. Comput. Syst. Sci. 73(3), 475–506 (2007), doi: MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Yang, R., Bhulai, S., van der Mei, R., Seinstra, F.: Optimal resource allocation for time-reservation systems. Perform. Eval. 68, 414–428 (2011), doi: CrossRefGoogle Scholar
  14. 14.
    Zhang, R., Koudas, N., Ooi, B.C., Srivastava, D., Zhou, P.: Streaming multiple aggregations using phantoms. The VLDB Journal 19, 557–583 (2010), doi: CrossRefGoogle Scholar
  15. 15.
    Zhao, H.C., Xia, C.H., Liu, Z., Towsley, D.: A unified modeling framework for distributed resource allocation of general fork and join processing networks. In: Proceedings of the ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, SIGMETRICS 2010, pp. 299–310. ACM, New York (2010), doi: Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Saint Petersburg UniversityPetersburgRussia

Personalised recommendations