Object Categorization in Clutter Using Additive Features and Hashing of Part-Graph Descriptors

  • Zoltan-Csaba Marton
  • Ferenc Balint-Benczedi
  • Florian Seidel
  • Lucian Cosmin Goron
  • Michael Beetz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7463)

Abstract

Detecting objects in clutter is an important capability for a household robot executing pick and place tasks in realistic settings. While approaches from 2D vision work reasonably well under certain lighting conditions and given unique textures, the development of inexpensive RGBD cameras opens the way for real-time geometric approaches that do not require templates of known objects.

This paper presents a part-graph-based hashing method for classifying objects in clutter, using an additive feature descriptor. The method is incremental, allowing easy addition of new training data without recreating the complete model, and takes advantage of the additive nature of the feature to increase efficiency. It is based on a graph representation of the scene created from considering possible groupings of over-segmented scene parts, which can in turn be used in classification. Additionally, the results over multiple segmentations can be accumulated to increase detection accuracy.

We evaluated our approach on a large RGBD dataset containing over 15000 Kinect scans of 102 objects grouped in 16 categories, which we arranged into six geometric classes. Furthermore, tests on complete cluttered scenes were performed as well, and used to showcase the importance of domain adaptation.

Keywords

segmentation hashing classification scene-graphs clutter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Biederman, I.: Recognition-by-components: A theory of human image understanding. Psychological Review (1987)Google Scholar
  2. 2.
    Dickinson, S.: The evolution of object categorization and the challenge of image abstraction. In: Dickinson, S., Leonardis, A., Schiele, B., Tarr, M. (eds.) Object Categorization: Computer and Human Vision Perspectives (2009)Google Scholar
  3. 3.
    Marton, Z.C., Pangercic, D., Blodow, N., Beetz, M.: Combined 2D-3D Categorization and Classification for Multimodal Perception Systems. The International Journal of Robotics Research (2011)Google Scholar
  4. 4.
    Lai, K., Fox, D.: Object recognition in 3d point clouds using web data and domain adaptation. The International Journal of Robotics Research 29(8), 1019–1037 (2010)CrossRefGoogle Scholar
  5. 5.
    Mozos, O.M., Marton, Z.C., Beetz, M.: Furniture Models Learned from the WWW – Using Web Catalogs to Locate and Categorize Unknown Furniture Pieces in 3D Laser Scans. Robotics & Automation Magazine 18(2), 22–32 (2011)CrossRefGoogle Scholar
  6. 6.
    Marton, Z.C., Rusu, R.B., Jain, D., Klank, U., Beetz, M.: Probabilistic Categorization of Kitchen Objects in Table Settings with a Composite Sensor. In: Proceedings of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, USA, October 11-15 (2009)Google Scholar
  7. 7.
    Malisiewicz, T., Efros, A.A.: Improving Spatial Support for Objects via Multiple Segmentations. In: Proceedings of the British Machine Vision Conference (2007)Google Scholar
  8. 8.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60, 91–110 (2004)CrossRefGoogle Scholar
  9. 9.
    Rusu, R.B., Bradski, G., Thibaux, R., Hsu, J.: Fast 3d recognition and pose using the viewpoint feature histogram. In: Proceedings of the 23rd IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Taipei, Taiwan (October 2010)Google Scholar
  10. 10.
    Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. In: CVPR, pp. 264–271 (2003)Google Scholar
  11. 11.
    Huber, D., Kapuria, A., Donamukkala, R.R., Hebert, M.: Parts-based 3d object classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2004) (July 2004)Google Scholar
  12. 12.
    Kanezaki, A., Nakayama, H., Harada, T., Kuniyoshi, Y.: High-speed 3d object recognition using additive features in a linear subspace. In: ICRA, pp. 3128–3134 (2010)Google Scholar
  13. 13.
    Watanabe, S., Pakvasa, N.: Subspace method in pattern recognition. In: Proceedings of 1st International Joint Conference on Pattern Recognition (1973)Google Scholar
  14. 14.
    Mian, A.S., Bennamoun, M., Owens, R.: Three-dimensional model-based object recognition and segmentation in cluttered scenes. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1584–1601 (2006)CrossRefGoogle Scholar
  15. 15.
    Bergström, N., Björkman, M., Kragic, D.: Generating Object Hypotheses in Natural Scenes through Human-Robot Interaction. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 827–833 (September 2011)Google Scholar
  16. 16.
    Mishra, A.K., Aloimonos, Y.: Visual Segmentation of “Simple” Objects for Robots. In: Robotics: Science and Systems (RSS) (2011)Google Scholar
  17. 17.
    Fowlkes, C.C., Martin, D.R., Malik, J.: Local figureground cues are valid for natural images. Journal of Vision 7(8) (2007)Google Scholar
  18. 18.
    Comaniciu, D., Meer, P., Member, S.: Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 603–619 (2002)CrossRefGoogle Scholar
  19. 19.
    Gould, S., Russakovsky, O., Goodfellow, I., Baumstarck, P., Ng, A.Y., Koller, D.: The stair vision library (v2.4) (2010), http://ai.stanford.edu/~sgould/svl
  20. 20.
    Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2, 27:1–27:27 (2011), Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
  21. 21.
    Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000)Google Scholar
  22. 22.
    Balint-Benczedi, F., Marton, Z.-C., Beetz, M.: Efficient part-graph hashes for object categorization. In: 5th International Conference on Cognitive Systems, CogSys 2012 (2012)Google Scholar
  23. 23.
    Pinz, A.: Object categorization. Found. Trends. Comput. Graph. Vis. 1, 255–353 (2005)CrossRefGoogle Scholar
  24. 24.
    Marton, Z.C., Pangercic, D., Rusu, R.B., Holzbach, A., Beetz, M.: Hierarchical object geometric categorization and appearance classification for mobile manipulation. In: Proceedings of 2010 IEEE-RAS International Conference on Humanoid Robots, Nashville, TN, USA, December 6-8 (2010)Google Scholar
  25. 25.
    Kanezaki, A., Marton, Z.C., Pangercic, D., Harada, T., Kuniyoshi, Y., Beetz, M.: Voxelized Shape and Color Histograms for RGB-D. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Workshop on Active Semantic Perception and Object Search in the Real World, San Francisco, CA, USA, September, 25–30 (2011)Google Scholar
  26. 26.
    Lai, K., Bo, L., Ren, X., Fox, D.: A large-scale hierarchical multi-view rgb-d object dataset. In: Proc. of International Conference on Robotics and Automation, ICRA (2011)Google Scholar
  27. 27.
    Lam, L., Suen, C.Y.: Optimal combinations of pattern classifiers. Pattern Recognition Letters 16(9), 945–954 (1995)CrossRefGoogle Scholar
  28. 28.
    Goron, L.C., Marton, Z.C., Lazea, G., Beetz, M.: Segmenting cylindrical and box-like objects in cluttered 3D scenes. In: 7th German Conference on Robotics (ROBOTIK 2012), Munich, Germany (May 2012)Google Scholar
  29. 29.
    Horswill, I.: Integrating vision and natural language without central models. In: Proceedings of the AAAI Fall Symposium on Embodied Language and Action (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Zoltan-Csaba Marton
    • 1
  • Ferenc Balint-Benczedi
    • 1
  • Florian Seidel
    • 1
  • Lucian Cosmin Goron
    • 1
  • Michael Beetz
    • 1
  1. 1.Intelligent Autonomous SystemsTechnische Universität MünchenGermany

Personalised recommendations