Using Spatial Analogy to Facilitate Graph Learning

  • Linsey A. Smith
  • Dedre Gentner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7463)

Abstract

Graphical depictions of complex interactions pose a challenge to spatial reasoning. In this research, we tested whether analogical processes can be harnessed to help students learn to solve complex graphical reasoning problems. Specifically, we asked whether a brief training experience using spatial analogies could help students learn about stock-and-flow graphs. The basic idea of our intervention was to juxtapose contrastive graphs and encourage students to compare them. In two studies, we test the following predictions derived from structural alignment theories of analogy: (1) comparing contrastive graphs during training will lead to better performance in a graph-understanding task than will studying the same exemplars sequentially; and (2) comparing high-similarity pairs will lead to better performance than will comparing low similarity pairs. The results support both of these predictions, indicating that even a brief analogical comparison task can confer relational insight. Further, these results corroborate prior evidence that a structural alignment process underlies analogical comparison.

Keywords

Analogy Analogical Comparison Structural Alignment Spatial Learning Graphical Reasoning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gentner, D.: The development of relational category knowledge. In: Gershkoff-Stowe, L., Rakison, D.H. (eds.) Building Object Categories in Developmental Time, pp. 245–275. Erlbaum, Hillsdale (2005)Google Scholar
  2. 2.
    Namy, L.L., Gentner, D.: Making a silk purse out of two sow’s ears: Young children’s use of comparison in category learning. J. Experimental Psychology: General 131(1), 5–15 (2002)CrossRefGoogle Scholar
  3. 3.
    Star, J.R., Rittle-Johnson, B.: It pays to compare: An experimental study on computational estimation. J. Experimental Child Psychology 101, 408–426 (2009)CrossRefGoogle Scholar
  4. 4.
    Gentner, D., Loewenstein, J., Thompson, L.: Learning and transfer: A general role for analogical encoding. J. of Educational Psychology 95(2), 393–405 (2003)CrossRefGoogle Scholar
  5. 5.
    Loewenstein, J., Gentner, D.: Spatial mapping in preschoolers: Close comparisons facilitate far mappings. J. of Cognition and Development 2(2), 189–219 (2001)CrossRefGoogle Scholar
  6. 6.
    Gentner, D.: Structure-mapping: A theoretical framework for analogy. Cognitive Science 7(2), 155–170 (1983)CrossRefGoogle Scholar
  7. 7.
    Gentner, D., Markman, A.B.: Structure mapping in analogy and similarity. American Psychologist 52, 45–56 (1997)CrossRefGoogle Scholar
  8. 8.
    Gick, M.L., Holyoak, K.J.: Schema induction and analogical transfer. Cognitive Psychology 15(1), 1–38 (1983)CrossRefGoogle Scholar
  9. 9.
    Gentner, D.: Why we’re so smart. In: Gentner, D., Goldin-Meadow, S. (eds.) Language in Mind: Advances in the Study of Language and Thought, pp. 195–235. MIT Press, Cambridge (2003)Google Scholar
  10. 10.
    Gentner, D.: Bootstrapping children’s learning: Analogical processes and symbol systems. Cognitive Science 34(5), 752–775 (2010)CrossRefGoogle Scholar
  11. 11.
    Christie, S., Gentner, D.: Where hypotheses come from: Learning new relations by structural alignment. J. Cognition and Development 11(3), 356–373 (2010)CrossRefGoogle Scholar
  12. 12.
    Gentner, D., Medina, J.: Similarity and the development of rules. Cognition 65, 263–297 (1998)CrossRefGoogle Scholar
  13. 13.
    Markman, A.B., Gentner, D.: Structural alignment during similarity comparisons. Cognitive Psychology 25, 431–467 (1993)CrossRefGoogle Scholar
  14. 14.
    Gentner, D., Gunn, V.: Structural alignment facilitates the noticing of differences. Memory and Cognition 29(4), 565–577 (2001)CrossRefGoogle Scholar
  15. 15.
    Gentner, D., Markman, A.B.: Structural alignment in comparison: No difference without similarity. Psychological Science 5(3), 152–158 (1994)CrossRefGoogle Scholar
  16. 16.
    Markman, A.B., Gentner, D.: Splitting the differences: A structural alignment view of similarity. J. Memory and Language 32, 517–535 (1993)CrossRefGoogle Scholar
  17. 17.
    Gentner, D., Sagi, E.: Does “different” imply a difference? A comparison of two tasks. In: Sun, R., Miyake, N. (eds.) Proceedings of the Twenty-Eighth Annual Conference of the Cognitive Science Society, pp. 261–266. Erlbaum, Mahwah (2006)Google Scholar
  18. 18.
    Carpenter, P., Shah, P.: A model of the perceptual and conceptual processes in graph comprehension. J. Experimental Psychology: Applied 4, 75–100 (1998)CrossRefGoogle Scholar
  19. 19.
    Tversky, B.: Spatial schemas in depictions. In: Gattis, M. (ed.) Spatial Schemas and Abstract Thought, pp. 79–111. MIT Press, Cambridge (2001)Google Scholar
  20. 20.
    Pinker, S.: A theory of graph comprehension. In: Freedle, R. (ed.) Artificial Intelligence and the Future of Testing, pp. 73–126. Erlbaum, Hillsdale (1990)Google Scholar
  21. 21.
    Gattis, M.: Mapping relational structure in spatial reasoning. Cognitive Science 28(4), 589–610 (2004)CrossRefGoogle Scholar
  22. 22.
    Bell, A., Janvier, C.: The interpretation of graphs representing situations. For the Learning of Mathematics 2(1), 34–42 (1981)Google Scholar
  23. 23.
    Booth Sweeney, L., Sterman, J.D.: Bathtub Dynamics: Initial Results of a Systems Thinking Inventory. System Dynamics Review 16, 249–294 (2001)CrossRefGoogle Scholar
  24. 24.
    Culbertson, H.M., Powers, R.D.: A study of graph comprehension difficulties. AV Communication Review 7, 97–110 (1959)Google Scholar
  25. 25.
    Gattis, M., Holyoak, K.J.: Mapping conceptual to spatial relations in visual reasoning. J. Experimental Psychology: Learning, Memory, and Cognition 22, 231–239 (1996)CrossRefGoogle Scholar
  26. 26.
    Kozhevnikov, M., Hegarty, M., Mayer, R.E.: Revising the visualizer/verbalizer dimension: Evidence for two types of visualizers. Cognition and Instruction 20, 47–77 (2002)CrossRefGoogle Scholar
  27. 27.
    Maichle, U.: Cognitive processes in understanding line graphs. In: Schnotz, W., Kulhavy, R.W. (eds.) Comprehension of Graphics, pp. 207–226. Elsevier Science, New York (1994)CrossRefGoogle Scholar
  28. 28.
    Shah, P., Carpenter, P.A.: Conceptual limitations in comprehending line graphs. J. Experimental Psychology: General 124, 43–61 (1995)CrossRefGoogle Scholar
  29. 29.
    Sterman, J.D., Booth Sweeney, L.: Cloudy Skies: Assessing Public Understanding of Global Warming. System Dynamics Review 18, 207–240 (2002)CrossRefGoogle Scholar
  30. 30.
    Sterman, J.D., Booth Sweeney, L.: Understanding Public Complacency About Climate Change: Adults’ Mental Models of Climate Change Violate Conservation of Matter. Climatic Change 80, 213–238 (2007)CrossRefGoogle Scholar
  31. 31.
    Cronin, M.A., Gonzalez, C., Sterman, J.D.: Why don’t well-educated adults understand accumulation? A challenge to researchers, educators, and citizens. Organizational Behavior and Human Decision Processes 108, 116–130 (2009)CrossRefGoogle Scholar
  32. 32.
    Cronin, M., Gonzalez, C.: Understanding the building blocks of system dynamics. System Dynamics Review 23(1), 1–17 (2007)CrossRefGoogle Scholar
  33. 33.
    Pala, Ö., Vennix, J.A.M.: Effect of system dynamics education on systems thinking inventory task performance. System Dynamics Review 21(2), 147–172 (2005)CrossRefGoogle Scholar
  34. 34.
    Catrambone, R., Holyoak, K.J.: Overcoming contextual limitations on problem-solving transfer. J. Experimental Psychology: Learning, Memory, and Cognition 15(6), 1147–1156 (1989)CrossRefGoogle Scholar
  35. 35.
    Gentner, D., Namy, L.: Comparison in the development of categories. Cognitive Development 14, 487–513 (1999)CrossRefGoogle Scholar
  36. 36.
    Mutafchieva, M., Kokinov, B.: Does the family analogy help young children to do relational mapping? In: Proceedings of the European Conference on Cognitive Science, pp. 407–412. Erlbaum, Hillsdale (2007)Google Scholar
  37. 37.
    Gentner, D., Loewenstein, J., Hung, B.: Comparison facilitates children’s learning of names for parts. J. Cognition and Development 8, 285–307 (2007)CrossRefGoogle Scholar
  38. 38.
    Gentner, D., Ratterman, M.J., Forbus, K.D.: The roles of similarity in transfer: Separating retrievability from inferential soundness. Cognitive Psychology 25, 524–575 (1993)CrossRefGoogle Scholar
  39. 39.
    Gentner, D., Toupin, C.: Systematicity and surface similarity in the development of analogy. Cognitive Science 10, 277–300 (1986)CrossRefGoogle Scholar
  40. 40.
    Paik, J.H., Mix, K.S.: Preschooler’s use of surface similarity in object comparisons: Taking context into account.  J. Experimental Child Psychology 95(3), 194–214 (2006)CrossRefGoogle Scholar
  41. 41.
    Richland, L.E., Morrison, R.G., Holyoak, K.J.: Children’s Development of Analogical Reasoning: Insights from Scene Analogy Problems. J. Experimental Child Psychology 94, 246–273 (2006)Google Scholar
  42. 42.
    Gentner, D., Kurtz, K.: Relations, objects, and the composition of analogies. Cognitive Science 30, 609–642 (2006)CrossRefGoogle Scholar
  43. 43.
    Gentner, D., Levine, S., Dhillon, S., Poltermann, A.: Using structural alignment to facilitate learning of spatial concepts in an informal setting. In: Kokinov, B., Holyoak, K.J., Gentner, D. (eds.) Proceedings of the Second International Conference on Analogy. NBU Press, Sofia (2009)Google Scholar
  44. 44.
    Kurtz, K.J., Miao, C., Gentner, D.: Learning by analogical bootstrapping. J. Learning Sciences 10(4), 417–446 (2001)CrossRefGoogle Scholar
  45. 45.
    Lakoff, G., Johnson, M.: Metaphors We Live By. University of Chicago Press, Chicago (1980)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Linsey A. Smith
    • 1
  • Dedre Gentner
    • 1
  1. 1.Department of PsychologyNorthwestern UniversityEvanstonUSA

Personalised recommendations